
 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

1

 ++Cبرمجة بلغة ال

1.1. C++ language:

In 1970 two programmers, Brian Kernighan and Dennis Ritchie, created a new language called C.

(The name came about because C was preceded by the old programming language, they were using

called B). C was designed with one goal in mind: writing operating systems. The language was

extremely simple and flexible and soon was used for many different types of programs.

In 1980 Bjarne Stroustrup started working on a new language, called ''C with Classes". This

language improved on C by adding a number of new features, the most important of which was

classes.

In 1983, the name of the language was changed from C with Classes to C++. The ++ operator in the C

language is an operator for incrementing a variable, Many new features were added around this time,

the most notable of which are virtual functions, function overloading, references with the &

symbol, the const keyword, and single-line comments using two forward slashes. Figure 1-1 shows

the relationship of C and C++.

Figure 1-1

http://www.cplusplus.com/doc/tutorial/polymorphism/#virtual
http://www.cplusplus.com/doc/tutorial/functions2/#function_overload

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

2

1.2. Why learn C++:

- C++ is a "middle level" language, therefore easier to learn and use than an assembly language,

contains many of the low-level capabilities of an assembly language. Thus, C++ is sometimes

called a "middle-level" language.

- C++ is portable. Most high-level languages are portable in the sense that a program written in a

high-level language should execute, with minor modifications, on several different computer

systems. C++ is one of the most portable of all the high-level languages. Properly written, a

C++ program can run on several computer systems with no modifications. Portability is

important because it is now common for a business to have several different types of computer

systems (a mainframe, minicomputers, pcs and Macintoshes.

- C++ is small. The C++ language does not contain many of the built-in features present in other

programming languages (such as visual basic has about 150 keywords on the other hand C++

has 60 keywords)

- C++ is an object-oriented extension of the c programming language.

1.3. C++ program contains:

C++ programs have parts and components that serve specific purposes. Every C++ program has an

anatomy. Unlike human anatomy, the parts of C++ programs are not always in the same place.

Nevertheless, the parts are there and your first step in learning C++ is to learn what they are.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

3

1.3.1. Structure of a program in C++ is:

Probably the best way to start learning a programming language is by writing a program. Therefore,

here is our first program (Program 1-1):

Program 1-1

1 // A simple C++ program

2 #include <iostream>

3

4

5 int main()

6 {

7 cout << "Programming is great fun!";

8 return 0;

9 }

The output of the program is shown below. This is what appears on the screen when the program runs.

Programming is great fun!

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

4

Let's examine the program line by line. Here's the first line: // A simple C++ program

The // marks the beginning of a comment. The compiler ignores everything from the double-slash to

the end of the line. That means you can type anything you want on that line and the compiler will

never complain! Although comments are not required, they are very important to programmers. Most

programs are much more complicated than the example in Program 1-1, and comments help explain

what's going on.

Line 2 looks like this: #include <iostream>

This line must be included in a C++ program in order to get input from the keyboard or print output to

the screen. Since the cout statement (on line 7) will print output to the computer screen, we need to

include this line. When a line begins with a # it indicates it is a preprocessor directive. The

preprocessor reads your program before it is compiled and only executes those lines beginning with a #

symbol. Think of the preprocessor as a program that “sets up” your source code for the compiler.

The #include directive causes the preprocessor to include the contents of another file in the program.

The word inside the brackets, iostream, is the name of the file that is to be included. The iostream file

contains code that allows a C++ program to display output on the screen and read input from the

keyboard. Because this program uses cout to display screen output, the iostream file must be included.

Its contents are included in the program at the point the #include statement appears. The iostream file

is called a header file, so it should be included at the head, or top, of the program.

Line 5 reads: int main()

This marks the beginning of a function. A function can be thought of as a group of one or more

programming statements that has a name. The name of this function is main, and the set of parentheses

that follows the name indicates that it is a function. The word int stands for “integer". It indicates

that the function sends an integer value back to the operating system when it is finished executing.

Although most C++ programs have more than one function, every C++ program must have a function

called main. It is the starting point of the program. If you're ever reading someone else's program and

want to find where it starts, just look for the function called main.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

5

Line 6 contains a single, solitary character: {

This is called a left-brace, or an opening brace, and it is associated with the beginning of

the function main. All the statements that make up a function are enclosed in a set of braces. If you

look at the third line down from the opening brace you’ll see the closing brace. Everything between

the two braces is the contents of the function main.

After the opening brace you see the following statement in line 7:

cout << "Programming is great fun!";

To put it simply, this line displays a message on the screen. You will read more about cout

and the << operator later. The message “Programming is great fun!” is printed without the

quotation marks. In programming terms, the group of characters inside the quotation marks is called

a string literal, a string constant, or simply a string.

Notice that line 7 ends with a semicolon. Just as a period marks the end of a sentence, a semicolon

is required to mark the end of a complete statement in C++. But many C++ lines do not end with

semicolons. Some of these include comments, preprocessor directives, and the beginning of functions.

Here are some examples of when to use, and not use, semicolons.

// Semicolon examples // This is a comment

include <iostream> // This is a preprocessor directive

int main() // This begins a function

cout << "Hello"; // This is a complete statement

As you spend more time working with C++ you will get a feel for where you should and should not

use semicolons. For now don’t worry about it. Just concentrate on learning the parts of a program.

Line 8 reads: return 0;

This sends the integer value 0 back to the operating system upon the program’s completion.

The value 0 usually indicates that a program executed successfully.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

6

The last line of the program, line 9, contains the closing brace: }

This brace marks the end of the main function. Because main is the only function in this

program, it also marks the end of the program.

In the sample program you encountered several sets of special characters. Table 1-1 provides

a short summary of how they were used.

Table 1-1:

Character Name Description

// Double slash Marks the beginning of a comment.

Pound sign Marks the beginning of a preprocessor directive.

< > Opening and closing brackets Encloses a filename when used with the #include

directive.

() Opening and closing

parentheses

Used in naming a function, as in int main().

{ } Opening and closing braces Encloses a group of statements, such as the contents

of a function.

" " Opening and closing quotation

marks

Encloses a string of characters, such as a message

that is to be printed on the screen.

; Semicolon Marks the end of a complete programming statement.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

1

 ++Cبرمجة بلغة ال

2.1.Basic files in C++:

C++ code files (with a .cpp extension) are not the only files commonly seen in C++ programs. The

other type of file is called a header file, sometimes known as an include file.

Header files contain definitions of Functions and Variables, which is imported or used into any C++

program by using the pre-processor #include statement. Header files usually have a .h extension, but

you will sometimes see them with a .hpp extension or no extension at all. The purpose of a header file

is to hold declarations for other files to use.

Types of Header files:

• System header files: It is comes with compiler.

• User header files: It is written by programmer.

Both user and system header files are include using the pre-processing directive #include. Here is

simple explanation for a few basic files, that C++ program include (header files):

Table 1-2: Simple example for a few basic System header files in C++

Header File Function and Description

<iostream> This file defines the cin, cout, cerr and clog objects, which

correspond to the standard input stream, the standard output stream,

the un-buffered standard error stream and the buffered standard error

stream, respectively.

<stdio.h> This file defines the scanf and printf objects, which correspond to

the standard input stream, the standard output stream.

< math.h> This file defines the abs(x), sin(x), cos(x), tan(x), sinh(x), cosh(x),

tanh(x), pow(x , y), exp(x), sqrt(x) and … etc objects.

2.2.The main() Function:

A C++ program is a collection of functions that work together to solve a problem. The collection of

functions that make up a C++ program must contain exactly one function called main(). A C++

program automatically begins execution at the first executable statement of the function main().

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

2

The statements in main() must be enclosed in braces{…}. Each statements ends in a semicolon ;.

It is very important to keep in mind that C++ is case sensitive. That is, when coding C++ statements

there is a difference between uppercase and lowercase letters.

The last statement executed by main() should be the return statement, we declare the function main()

to produce an integer value. The return 0; statement does two things. First , it ends the execution of

main(). Second , it sends the integer value 0 back to the operating system to indicate that the program

ended normally. Here is the general form of main() function:

int main()

{

statements

return 0;

}

The function header is a capsule summary of the function’s interface with the rest of the program, and

the function body represents instructions to the computer about what the function should do. In C++

each complete instruction is called a statement. You must terminate each statement with a semicolon,

so don’t omit the semicolons when you type the examples.

Figure 1-2

 جامعة الفرات الاوسط التقنية / المعهد التقني كربلاء قسم تقنيات انظمة الحاسوب / السنة الاولى

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

1

 ++Cبرمجة بلغة ال

3.1. Basic element and tools of C++ language:

There are certain elements(Language Elements) that are common to all programming languages. All

programming languages have a few things in common. Table 2-1 lists the common elements

found in almost every language.

Table 2-1:

3.1.1. Key Words in C++ language:

Are words always written in lowercase, each have a special meaning in C++ and can only be used for

their intended purposes. As you will see, the programmer is allowed to make up his or her own names

for certain things in a program. Key words, however, are reserved and cannot be used for anything

other than their designated purposes. Part of learning a programming language is learning what the key

words are, what they mean, and how to use them. Here is a list of reserved words(keywords) in C++:

asm, bool, break, case, catch, char, class, compl, const, continue, default, delete, do,

double, else, false, float, for, goto, if, inline, int, long, namespace, new, not, nullptr, or,

private, public, register, return, short, signed, sizeof, static, struct, switch, true,

unsigned, void, wchar_t, while, xor and xor_eq.

 جامعة الفرات الاوسط التقنية / المعهد التقني كربلاء قسم تقنيات انظمة الحاسوب / السنة الاولى

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

2

3.1.2. Predefined Identifiers:

Beginning C++ programmers are sometimes confused by the difference between the two terms reserved

word and predefined identifier, and some potential for confusion. One of the difficulties is that some

keywords that one might "expect" to be reserved words are not. The keyword main is a prime example,

and others include things like the endl manipulator and other keywords from the vast collection of C++

libraries.

For example, you could declare a variable called main inside your main function, initialize it, and then

print out its value (but ONLY do that to verify that you can!). On the other hand, you could not do this

with a variable named else. The difference is that else is a reserved word, while main is "only"

a predefined identifier. Here is a short list of some predefined identifiers:

cin, endl, INT_MIN, iomanip, main, npos, std, cout, include, INT_MAX, iostream,

MAX_RAND NULL and string.

3.1.3. Programmer-Defined(Identifiers):

They are not part of the C++ language but rather are names made up by the programmer. They are the

names of variables. variables are the names of memory locations that may hold data.

• Legal Identifiers:

Regardless of which style you adopt, be consistent and make your variable names as sensible as

possible. Here are some specific rules that must be followed with all C++ identifiers:

1- The first character must be one of the letters a through z, A through Z, or an underscore

character (_).

2- After the first character you may use the letters a through z or A through Z, the digits 0

through 9, or underscores.

3- Uppercase and lowercase characters are distinct. This means ItemsOrdered is not the

same as itemsordered. Table 2-2 lists variable names and indicates whether each is legal

or illegal in C++.

 جامعة الفرات الاوسط التقنية / المعهد التقني كربلاء قسم تقنيات انظمة الحاسوب / السنة الاولى

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

3

Table 2-2:

3.1.4. Operator:

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. C++ is rich in built-in operators and provide the following types of operators:

• Arithmetic Operators (+, -, *, /, %, ++ and --).

• Relational Operators (==, !=, >, <, >= and <=).

• Logical Operators (||, && and !).

• Bitwise Operators (&, |, ^, ~, << and >>).

• Assignment Operators (=, +=, -=, *=, /= and %=).

• Misc Operators.

Later will examine the arithmetic, relational, logical, bitwise, assignment and other operators one by one.

3.1.5. Punctuation:

They are characters(symbols) have special meanings in C++ like: [,], (,), {, }, *, ,, :, =, ; and #.

3.1.6. Syntax:

Syntax are legal uses of key words, operators, punctuation, and other language elements. If the

program is free of syntax errors, the compiler stores the translated machine language instructions,

which are called object code, in an object file.

 جامعة الفرات الاوسط التقنية / المعهد التقني كربلاء قسم تقنيات انظمة الحاسوب / السنة الاولى

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

1

 ++Cبرمجة بلغة ال

4.1.Constant represent:

Constants are data items whose values cannot change while the program is running. By symbolic

names for constants can suggest what the constant represents. Also, if the program uses the constant in

several places and you need to change the value, you can just change the single symbol definition. We

can use simple way in C++ to define constants by const keyword.

The general form to declaration and initialization constant in this way is:

const data-type CONSTANT_NAME= value;

Now you can use MONTHS in a program instead of 12. After you initialize a constant such as

MONTHS, its value is set. The compiler does not let you subsequently change the value MONTHS.

const int MONTHS = 12; // Months is symbolic constant for 12

A common practice is to use all uppercase for the name to help remind yourself that MONTHS is a

constant.

4.2.Variables represent:

Variables represent storage locations(reference) in the computer’s memory. The concept of a

variable in computer programming is somewhat different from the concept of a variable in

mathematics. In programming, a variable is a named storage location for holding data. Variables

allow you to store and work with data in the computer's memory. They provide an “interface” to RAM.

Part of the job of programming is to determine how many variables a program will need and what

type of information each will hold. To store an item of information in a computer, the program must

keep track of three fundamental properties:

1. Where the information is stored.

2. What value is kept there.

3. What kind of information is stored.

Here is the general form to declaration a variable in C++:

data-type variable _name;

 جامعة الفرات الاوسط التقنية / المعهد التقني كربلاء قسم تقنيات انظمة الحاسوب / السنة الاولى

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

2

The data type used in the declaration describes the kind of information, and the variable name

represents the value symbolically(memory location label). For example, suppose we have the

following statements:

int braincount; // declaration variable braincount

braincount = 5; // initialization variable braincount by give it value 5

These statements tell the program that it is storing an integer and that the name braincount

represents the integer’s value, 5 in this case.

And here is the general form to declaration and initialization a variable at the same time in C++:

data-type variable _name = value;

For example:

int braincount=5; // declaration and initialization variable braincount

4.3. Data types in C++, and they represent methods in memory:

Data used by your program is stored in memory and manipulated by various data structure techniques,

depending on the nature of your program. Let’s take a close look at main memory and how data is stored

in memory before exploring how to manipulate data using data structures.

Memory is a bunch of electronic switches called transistors that can be placed in one of two states: on

or off. The state of a switch is meaningless unless you assign a value to each state, which you do using

the binary numbering system.

The binary numbering system consists of two digits called binary digits (bits): zero and one. A switch

in the off state represents zero, and a switch in the on state represents one. This means that one transistor

can represent one of two digits.

 جامعة الفرات الاوسط التقنية / المعهد التقني كربلاء قسم تقنيات انظمة الحاسوب / السنة الاولى

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

3

Memory is organized into groups of eight bits called a byte, enabling 256 combinations of zeros and

ones that can store numbers from 0 through 255.

Although a unit of memory holds a byte, data used in a program can be larger than a byte and require

2, 4, or 8 bytes to be stored in memory. Before any data can be stored in memory, you must tell the

computer how much space to reserve for data by using a data type.

Memory is reserved by using a data type in a declaration statement. The form of a declaration

statement to variables in C++ you learned about it in the previous week (2.4. Variables represent).

There are many different types of data. Variables are classified according to their data type, which

determines the kind of information that may be stored in them.

Although C++ offers many data types, in the very broadest sense there are only two:

numeric and character. Numeric data types are broken into two additional categories:

integer and floating-point, as shown in Figure 2-1.

Figure 2-1

C++ offers the programmer a rich assortment of built-in as well as user defined data types. Following

table lists down seven basic C++ data types:

Table 2-3:

Data Type Keyword in C++ Data Type Size in bits

(Bytes)

Boolean bool 1 B

Characters char 16 bit =(2 Byte)

Integers int 32 b =(4 B)

 جامعة الفرات الاوسط التقنية / المعهد التقني كربلاء قسم تقنيات انظمة الحاسوب / السنة الاولى

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

4

Data Type Keyword in C++ Data Type Size in bits

(Bytes)

Floating-point float 32 b =(4 B)

Double floating point double 64 b =(8 B)

Several of the basic types can be modified using one or more of these type modifiers:

• signed

• unsigned

• short

• long

The following table shows the variable type, how much memory it takes to store the value in memory,

and what is maximum and minimum value which can be stored in such type of variables.

Table 2-4:

 جامعة الفرات الاوسط التقنية / المعهد التقني كربلاء قسم تقنيات انظمة الحاسوب / السنة الاولى

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

5

4.3.1. Char data type:

A variable of the char data type holds only a single character.

You might be wondering why there isn't a 1-byte integer data type. Actually there is. It is

called the char data type, which gets its name from the word “character". A variable defined

as a char can hold a single character, but strictly speaking, it is an integer data type.

The reason an integer data type is used to store characters is because characters are internally

represented by numbers. The most commonly used method for encoding characters is ASCII, which

stands for the American Standard Code for Information Interchange.

Keyword in C++

 جامعة الفرات الاوسط التقنية / المعهد التقني كربلاء قسم تقنيات انظمة الحاسوب / السنة الاولى

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

6

When a character is stored in memory, it is actually the numeric code that is stored. When the

computer is instructed to print the value on the screen, it displays the character that corresponds with

the numeric code. Notice that the number 65 is the code for A, 66 is the code for B, and so on.

Figure 2-2 illustrates that when you think of characters, such as A, B, and C, being stored in memory,

it is really the numbers 65, 66, and 67 that are stored.

Figure 2-2

Here is the general form to declaration a variable of character type in C++:

char variable _name; // declaration variable of character type

char variable _name=Value; // declaration and initialization variable of character type

Characters are enclosed in single quotation marks '. 'A', 'a' and ' ! ' are character constants.

For example: Char letter; // valid in C++

 Char letter1='A'; // valid in C++

Character constants can only hold a single character. To store a series of characters in a constant we

need a string constant. In the following example, 'H' is a character constant and "Hello" is a string

constant. Notice that a character constant is enclosed in single quotation marks whereas a string

constant is enclosed in double quotation marks.

cout << 'H';

cout << "Hello";

4.3.2. Integer data type:

Integer variables can only hold whole numbers.

Your primary considerations for selecting the best data type for a numeric variable are the following:

 جامعة الفرات الاوسط التقنية / المعهد التقني كربلاء قسم تقنيات انظمة الحاسوب / السنة الاولى

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

7

• whether the variable needs to hold integers or floating-point values,

• the largest and smallest numbers that the variable needs to be able to store,

• whether the variable needs to hold signed (both positive and negative) or only unsigned (just

zero and positive) numbers, and

• the number of decimal places of precision needed for values stored in the variable.

Later in lap lecture you will learn to use the sizeof operator to determine how large all the data types

are on your computer.

Here is the general form to declaration a variable of integer type in C++:

int variable _name; // declaration variable of integer type

int variable _name=Value; // declaration and initialization variable of integer type

For example: int num; // valid in C++

 int num=10; // valid in C++

4.3.3. Real data type (floating point numbers):

Real numbers are numbers that have a fractional part. Because of the way they are stored

internally, real numbers are also known as floating point numbers. The numbers 5.5, 8.3, and -12.6

are all floating point numbers. C++ uses the decimal point to distinguish between floating point

numbers and integers, so a number such as 5.0 is a floating point number while 5 is an integer.

Floating point numbers must contain a decimal point. Numbers such as 3.14159, 0.5, 1.0, and 8.88

are floating point numbers.

Here is the general form to declaration a variable of floating point type in C++:

 float variable _name; // declaration variable of floating point type

 float variable _name=Value; // declaration and initialization variable of floating point type

For example: float num; // valid in C++

 float num=5.3; // valid in C++

4.3.4. Boolean (logical) data type:

Boolean variables are set to either true or false.

 جامعة الفرات الاوسط التقنية / المعهد التقني كربلاء قسم تقنيات انظمة الحاسوب / السنة الاولى

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

8

Expressions that have a true or false value are called Boolean expressions, named in honor of English

mathematician George Boole (1815–1864). The bool data type allows you to create variables that hold

true or false values. It is actually an integer variable that stores 0 for false and 1 for true.

Here is the general form to declaration a variable of boolean type in C++:

bool variable _name; // declaration variable of boolean type

bool variable _name=Value; // declaration and initialization variable of boolean type

For example: bool flag; // valid in C++

 bool flag=False; // valid in C++

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

1

 ++Cبرمجة بلغة ال

5. A statement

a statement is a part of your program that can be executed. That is, a statement specifies an action. C

and C++ categorize statements into these groups:

1. Declaration

2. Expression

3. Selection

4. Iteration

5. Jump

6. Label

7. Block

8. Try block

Included in the declaration statements are declaration variables, constants, functions and so on.

Expression statements are statements composed of a valid expression. Selection statements are if and

switch. (The term conditional statement is often used in place of "selection statement.") The iteration

statements are while, for, and do-while. These are also commonly called loop statements. The jump

statements are break, continue, goto, and return. The label statements include the case and default

statements (discussed along with the switch statement) and the label statement (discussed with goto).

Block statements are simply blocks of code. (A block begins with a { and ends with a }.) Block

statements are also referred to as compound statements.

declaration statements already we learned about it in the previous week 1 and 2. Here we will discuss

expressions statements.

5.1. Expressions types in C++ language:

An expression in a programming language is a combination of one or more

explicit values, constants, variables, operators, and functions that the programming language interprets

(according to its particular rules of precedence and of association) and computes to produce another

value.

An expression in C++ is any valid combination of its elements. Because most expressions tend to

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Value_(computer_science)
https://en.wikipedia.org/wiki/Constant_(programming)
https://en.wikipedia.org/wiki/Variable_(programming)
https://en.wikipedia.org/wiki/Operator_(programming)
https://en.wikipedia.org/wiki/Function_(programming)
https://en.wikipedia.org/wiki/Order_of_operations

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

2

follow the general rules of algebra, they are often taken for granted. However, a few aspects of

expressions relate specifically to C++. And we will discuss some of these expressions like:

1- Arithmetic expression.

2- Relational expression.

3- Logical expression.

4- Compound expression.

1. Arithmetic expression:

An arithmetic expression is a syntactically correct combination of numbers, operators, parenthesis, and

variables. And basically we need to know what are the arithmetic operation and its priorities.

C++ provides many operators for manipulating data. Generally, there are three types of

operators: unary, binary, and ternary. These terms reflect the number of operands an operator

requires.

• Unary operators only require a single operand. For example, consider the following

expression: −5 Of course, we understand this represents the value negative five. The constant 5

is preceded by the minus sign.

• Binary operators work with two operands.

• Ternary operators, as you may have guessed, require three operands. C++ only has one

ternary operator, which will be discussed later.

Arithmetic operations occur frequently in programming. Table 3-1 shows the common arithmetic

operators in C++. All are binary operators.

Table 3-1:

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

3

Here is an example of how each of these operators works.

The addition operator returns the sum of its two operands.

total = 4 + 8; // total is assigned the value 12

The subtraction operator returns the value of its right operand subtracted from its left operand.

candyBars = 8 - 3; // candyBars is assigned the value 5

The multiplication operator returns the product of its two operands.

 points = 3 * 7 // points is assigned the value 21

The division operator works differently depending on whether its operands are integer or floating

point numbers. When both numbers are integers, the division operator performs integer division. This

means that the result is always an integer. If there is any remainder, it is discarded.

fullBoxes = 26 / 8; // fullBoxes is assigned the value 3

The variable fullBoxes is assigned the value 3 because 8 goes into 26 three whole times

with a remainder of 2. The remainder is discarded. If you want the division operator to perform regular

division, you must make sure at least one of the operands is a floating point number.

boxes = 26.0 / 8; // boxes is assigned the value 3.25

The modulus operator computes the remainder of doing an integer divide.

leftOver = 26 % 8; // leftOver is assigned the value 2

Figure 3-1 illustrates the use of the integer divide and modulus operations.

Figure 3-1

• Operator Precedence(priorities): It is possible to build mathematical expressions with several

operators. The following statement assigns the sum of 17, x, 21, and y to the variable answer.

answer = 17 + x + 21 + y;

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

4

Some expressions are not that straightforward, however. Consider the following statement:

outcome = 12 + 6 / 3;

What value will be stored in outcome? It could be assigned either 6 or 14, depending on whether the

addition operation or the division operation takes place first. The answer is 14 because the division

operator has higher priorities than the addition operator.

So the example statement works like this:

A) 6 is divided by 3, yielding a result of 2

B) 12 is added to 2, yielding a result of 14

It could be diagrammed in the following way:

12 + 6 / 3

12 + 2

14

Table 3-2 shows the priorities of the arithmetic operators. The operators at the top of the table have

higher priorities than the ones below it.

Table 3-2:

The multiplication, division, and modulus operators have the same precedence. This is also true of the

addition and subtraction operators. Table 3-3 shows some expressions with their values.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

5

Table 3-3:

Note: Without parentheses, the computer evaluates the arithmetic operators in an expression according

to the following:

1- Do multiplications, divisions, and remainder operations first. If there are more than one such

operation, do them in order from left to right.

2- Next, do additions and subtractions. If there are more than one such operation, do them in

order from left to right.

• Grouping with Parentheses: Parts of a mathematical expression may be grouped with parentheses

to force some operations to be performed before others. In the following statement, the sum of a

plus b is divided by 4.

average = (a + b) / 4;

Without the parentheses b would be divided by 4 before adding a to the result. Table 3-4

shows more expressions and their values.

Table 3-4:

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

6

• Converting Algebraic Expressions to Programming Statements: In algebra it is not always

necessary to use an operator for multiplication. C++, however, requires an operator for any

mathematical operation. Table 3-5 shows some algebraic expressions that perform multiplication

and the equivalent C++ expressions.

Table 3-5:

When converting some algebraic expressions to C++, you may have to insert parentheses that do not

appear in the algebraic expression. For example, look at the following expression:

To convert this to a C++ statement, a + b will have to be enclosed in parentheses:

x = (a + b) / c;

Table 3-6 shows more algebraic expressions and their C++ equivalents.

Table 3-6:

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / الفرات الاوسط التقنيةجامعة

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

1

 ++Cبرمجة بلغة ال

6.1. Relational Expressions:

Computers are more than relentless number crunchers. They have the capability to compare values,

and this capability is the foundation of computer decision making. In C++ relational operators

embody this ability. C++ provides six relational operators to compare numbers. Because characters

are represented by their ASCII codes, you can use these operators with characters, too.

All expressions have a value. Relational expressions are Boolean expressions, which means their

value can only be true or false. Each relational expression reduces to the bool value true if the

comparison is true and to the bool value false if the comparison is false. (Older implementations

evaluate true relational expressions to 1 and false relational expressions to 0.) the next table

summarizes these operators.

Table 4-1: Relational Operators

All of the relational operators are binary. This means they use two operands. Here is an example of an

expression using the greater-than operator:

x > y

This expression is called a relational expression. It is used to determine whether x is greater

than y. The following expression determines whether x is less than y:

x < y

If x is greater than y, the expression x > y will be true, while the expression y == x will be false.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / الفرات الاوسط التقنيةجامعة

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

2

The == operator determines whether the operand on its left is equal to the operand on its right.

If both operands have the same value, the expression is true.

Assuming that a is 4, the following expression is true: a == 4

But the following is false: a == 2

A couple of the relational operators actually test for two relationships. The >= operator determines

whether the operand on its left is greater than or equal to the operand on the right.

Assuming that a is 4, b is 6, and c is 4, both of the following expressions are true:

b >= a

a >= c

But the following is false:

a >= 5

The <= operator determines whether the operand on its left is less than or equal to the

operand on its right. Once again, assuming that a is 4, b is 6, and c is 4, both of the following

expressions are true:

a <= c

b <= 10

But the following is false:

b <= a

The last relational operator is !=, which is the not-equal operator. It determines

whether the operand on its left is not equal to the operand on its right, which is the

opposite of the == operator. As before, assuming a is 4, b is 6, and c is 4, both of the

following expressions are true:

a != b

b != c

These expressions are true because a is not equal to b and b is not equal to c. But the following

expression is false because a is equal to c:

a != c

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / الفرات الاوسط التقنيةجامعة

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

3

Table 4-2 shows Example Relational Expressions (Assume x is 10 and y is 7.).

Table 4-2:

6.2. Logical Expressions:

Often you must test for more than one condition. For example, for a character to be a lowercase

letter, its value must be greater than or equal to ‘a’ and less than or equal to ‘z’. Or, if

you ask a user to respond with a y or an n, you want to accept uppercase (Y and N) as well as

lowercase. To meet this kind of need, C++ provides three logical operators to combine or modify

existing expressions. The next table shows these operators:

Table 4-3: Logical Operators

• The && Operator:

The && operator is known as the logical AND operator. It takes two expressions as operands and

creates an expression that is true only when both sub-expressions are true.

Table 4-4 shows a truth table for the && operator.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / الفرات الاوسط التقنيةجامعة

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

4

Table 4-4:

Here are some examples:

5 == 5 && 4 == 4 // true because both expressions are true

5 == 3 && 4 == 4 // false because first expression is false

5 > 3 && 5 > 10 // false because second expression is false

5 > 8 && 5 < 10 // false because first expression is false

5 < 8 && 5 > 2 // true because both expressions are true

5 > 8 && 5 < 2 // false because both expressions are false

Because the && has a lower precedence than the relational operators, you don’t need to use

parentheses in these expressions.

• The || Operator:

The || operator is known as the logical OR operator. It takes two expressions as operands

and creates an expression that is true when either of the sub-expressions or both are true.

In English, the word or can indicate when one or both of two conditions satisfy a requirement.

Table 4-5 shows a truth table for the || operator.

Table 4-5:

All it takes for an OR expression to be true is for one of the sub-expressions to be true. It

doesn’t matter if the other sub-expression is false or true.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / الفرات الاوسط التقنيةجامعة

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

5

Here are some examples:

5 ==5 || 5 == 9 // true because first expression is true

5 > 3 || 5 > 10 // true because first expression is true

5 > 8 || 5 < 10 // true because second expression is true

5 < 8 || 5 > 2 // true because both expressions are true

5 > 8 || 5 < 2 // false because both expressions are false

Because the || has a lower precedence than the relational operators, you don’t need to use

parentheses in these expressions.

• The ! Operator:

The ! operator performs a logical NOT operation. It takes an operand and reverses its

truth or falsehood. In other words, if the expression is true, the ! operator returns false,

and if the expression is false, it returns true.

Table 4-6 shows the precedence of C++'s logical operators, from highest to lowest.

Table 4-6:

As mentioned earlier, the C++ logical OR and logical AND operators have a lower precedence than

relational operators. This means that an expression such as this

x > 5 && x < 10

is read this way:

(x > 5) && (x < 10)

The ! operator, on the other hand, has a higher precedence than any of the relational or arithmetic

operators. Therefore, to negate an expression, you should enclose the expression in parentheses, like

this:

!(x > 5) // is it false that x is greater than 5

!x > 5 // is !x greater than 5

Incidentally, the second expression here is always false because !x can have only the values

true or false, which get converted to 1 or 0.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / الفرات الاوسط التقنيةجامعة

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

6

The logical AND operator has a higher precedence than the logical OR operator. Thus this

expression:

age > 30 && age < 45 || weight > 300

means the following:

(age > 30 && age < 45) || weight > 300

That is, one condition is that age be in the range 31–44, and the second condition is that weight be

greater than 300. The entire expression is true if one the other or both of these conditions are true.

You can, of course, use parentheses to tell the program the interpretation you want. For example,

suppose you want to use && to combine the condition that age be greater than 50 or weight be greater

than 300 with the condition that donation be greater than 1,000. You have to enclose the OR part

within parentheses:

(age > 50 || weight > 300) && donation > 1000

Otherwise, the compiler combines the weight condition with the donation condition instead of with the

age condition.

Although the C++ operator precedence rules often make it possible to write compound comparisons

without using parentheses, the simplest course of action is to use parentheses to group the tests,

whether or not the parentheses are needed. It makes the code easier to read, it doesn’t force someone

else to look up some of the less commonly used precedence rules, and it reduces the chance of making

errors because you don’t quite remember the exact rule that applies.

C++ guarantees that when a program evaluates a logical expression, it evaluates it from left to right

and stops evaluation as soon as it knows what the answer is. Suppose, for example, that you have this

condition:

x != 0 && 1.0 / x > 100.0

If the first condition is false, then the whole expression must be false. That’s because for this

expression to be true, each individual condition must be true. Knowing the first condition is false, the

program doesn’t bother evaluating the second condition. That’s fortunate in this example because

evaluating the second condition would result in dividing by zero, which is not in a computer’s

repertoire of possible actions.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

1

 ++Cبرمجة بلغة ال

7.1. Comments:

Comments are notes of explanation that document lines or sections of a program.

It may surprise you that one of the most important parts of a program has absolutely no impact on the

way it runs. We are speaking, of course, of the comments. Comments are part of the program, but the

compiler ignores them. They are intended for people who may be reading the source code.

1. Single Line Comments

You have already seen one way to place comments in a C++ program. You simply place two

forward slashes (//) where you want the comment to begin. The compiler ignores everything from

that point to the end of the line.

2. Multi-Line Comments

The second type of comment in C++ is the multi-line comment. Multi-line comments start with

/* (a forward slash followed by an asterisk) and end with */ (an asterisk followed by a forward

slash). Everything between these markers is ignored. The Program 4-1 illustrates the use of both a

multi-line comment and single line comments. The multi-line comment starts on line 1 with the

/* symbol, and ends on line 6 with the */ symbol.

Program 4-1

1 /*

2 PROGRAM: PAYROLL.CPP

3 Written by Herbert Dorfmann

4 This program calculates company payroll

5 Last modified: 8/20/2006

6 */

7 #include <iostream>

8 using namespace std;

9

10 int main()

11 {

12 int employeeID; // Employee ID number

13 double payRate; // Employees hourly pay rate

14 double hours; // Hours employee worked this week

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

2

(The remainder of this program is left out.)

Notice that unlike a comment started with //, a multi-line comment can span several lines.

This makes it more convenient to write large blocks of comments because you do not have to mark

every line. On the other hand, the multi-line comment is inconvenient for writing single line comments

because you must type both a beginning and ending comment symbol.

When using multi-line comments:

• Be careful not to reverse the beginning symbol with the ending symbol.

• Be sure not to forget the ending symbol.

Both of these mistakes can be difficult to track down, and will prevent the program from compiling

correctly.

7.2. Variable Assignments and Initialization:

An assignment operation assigns, or copies, a value into a variable. When a value is assigned to a

variable as part of the variable’s definition, it is called an initialization.

As you have already seen in several examples, a value is stored in a variable with an assignment

statement. For example, the following statement copies the value 12 into the variable unitsSold.

unitsSold = 12;

The = symbol, as you recall, is called the assignment operator. Operators perform operations on

data. The data that operators work with are called operands. The assignment operator has two

operands. In the previous statement, the operands are unitsSold and 12. It is important to remember

that in an assignment statement, C++ requires the name of the variable receiving the assignment to

appear on the left side of the operator. The following statement is incorrect.

12 = unitsSold; // Incorrect!

You have also seen that it is possible to assign values to variables when they are defined. This is called

initialization. When multiple variables are defined in the same statement, it is possible to initialize

some of them without having to initialize all of them. The program 4-2 illustrates this.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

3

Program 4-2

1 // This program shows variable initialization.

2 #include <iostream>

3

4 using namespace std;

5

6 int main()

7 {

8

9 int year, // year is not initialized

10 days = 360; // days is initialized to 360

11

12 year = 2007; // Now year is assigned a value

13

14 cout << "In " << year << " "

15 << " had " << days << " days";

16

17 return 0;

18 }

7.3. Multiple and Combined Assignment:

1- Multiple Assignment:

Multiple assignment means to assign the same value to several variables with one

statement.

C++ allows you to assign a value to multiple variables at once. If a program has several

variables, such as a, b, c, and d, and each variable needs to be assigned a value, such as 12,

the following statement may be constructed:

a = b = c = d = 12;

The value 12 will be assigned to each variable listed in the statement. This works because the

assignment operations are carried out from right to left. First 12 is assigned to d. Then d’s

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

4

value, now a 12, is assigned to c. Then c’s value is assigned to b, and finally b’s value is

assigned to a.

2- Combined Assignment operators:

Quite often programs have assignment statements of the following form:

num = num + 1;

The expression on the right side of the assignment operator gives the value of num plus 1. The

result is then assigned to num, replacing the value that was previously stored there. Effectively,

this statement adds 1 to num. In a similar fashion, the following statement

subtracts 5 from num.

num = num – 5;

If you have never seen this type of statement before, it might cause some initial confusion

because the same variable name appears on both sides of the assignment operator.

Table 4-7 shows other examples of statements written this way.

Table 4-7: Assignment Statements that Change a Variable’s Value (Assume x = 6)

Because these types of operations are so common in programming, C++ offers a special set of

operators designed specifically for these jobs. Table 4-8 shows the combined assignment operators,

also known as compound operators or arithmetic assignment operators.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

5

Table 4-8: Combined Assignment Operators

As you can see, the combined assignment operators do not require the programmer to type the

variable name twice. Also, they give a clear indication of what is happening in the statement.

More elaborate statements may be expressed with the combined assignment operators.

Here is an example:

result *= a + 5;

In this statement, result is multiplied by the sum of a + 5. Notice that the precedence of

the combined assignment operators is lower than that of the regular arithmetic operators.

The above statement is equivalent to

result = result * (a + 5);

which is different from

result = result * a + 5;

Table 4-9 shows additional examples using combined assignment operators.

Table 4-9: Examples Using Combined Assignment Operators and Arithmetic Operators

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

1

 ++Cبرمجة بلغة ال

8.1. The Increment and Decrement Operators:

C++ provides a pair of unary operators for incrementing and decrementing variables.

To increment a value means to increase it, and to decrement a value means to decrease it. In the

example below, qtyOrdered is incremented by 10 and numSold is decremented by 3.

qtyOrdered = qtyOrdered + 10;

numSold = numSold -3;

Although the values stored in variables can be increased or decreased by any amount, it is particularly

common to increment them or decrement them by 1. C++ provides a pair of unary operators to do this.

The ++ operator increases its operand’s value by 1. The -- operator decreases its operand’s value by

1. Here are three different ways to increment the value of the variable num by 1.

num = num + 1; //normal

num += 1; //combine assignment

num++; //increment

And here are three different ways to decrement it by 1:

num = num - 1;

num -= 1;

num--;

Our examples so far show the increment and decrement operators used in postfix mode, which means

the operator is placed after the variable. The operators also work in prefix mode, where the operator is

placed before the variable name:

++num;

--num;

In both prefix and postfix mode, these operators add 1 to, or subtract 1 from, their operand. The

following example illustrates the use of these operators in both prefix and postfix mode.

Notice that there is no space between the name of the variable and the ++ or -- preceding it or

following it.

num = 4;

num++; // now num has the value 5

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

2

++num; // now num has the value 6

num--; // now num has the value 5 again

--num; // now num has the value 4 again

Next program includes these 5 lines of code along with cout statements to further illustrate how they

work.

Program 5-1

1 // This program demonstrates the ++ and -- operators.

2 #include <iostream>

3 using namespace std;

4

5 int main()

6 {

7 int num = 4; // num starts out with 4

8

9 // Display the value in num

10 cout << "The variable num is " << num << endl;

11 cout << "I will now increment num.\n\n";

12

13 // Use postfix ++ to increment num

14 num++;

15 cout << "Now the variable num is " << num << endl;

16 cout << "I will increment num again.\n\n";

17

18 // Use prefix ++ to increment num

19 ++num;

20 cout << "Now the variable num is " << num << endl;

21 cout << "I will now decrement num.\n\n";

22

23 // Use postfix -- to decrement num

24 num--;

25 cout << "Now the variable num is " << num << endl;

26 cout << "I will decrement num again.\n\n";

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

3

27

28 // Use prefix -- to increment num

29 --num;

30 cout << "Now the variable num is " << num << endl;

31 return 0;

32 }

Program Output

The variable num is 4

I will now increment num.

Now the variable num is 5

I will increment num again.

Now the variable num is 6

I will now decrement num.

Now the variable num is 5

I will decrement num again.

Now the variable num is 4

8.2. The Difference Between Postfix and Prefix Modes:

In the simple statements used in Program 5-1, it doesn’t matter if the increment or decrement operator

is used in postfix or prefix mode. The difference is important, however, when these operators are used

in statements that do more than just increment or decrement.

For example, look at the following lines:

num = 4;

cout << num++;

This cout statement is doing two things:

1) displaying the value of num, and

2) incrementing num.

But which happens first? cout will display a different value if num is incremented first than if num

is incremented last. The answer depends on the mode of the increment operator. Postfix mode causes

the increment to happen after the value of the variable is used in the expression. In the example, cout

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

4

will display 4, then num will be incremented to 5. Prefix mode, however, causes the increment to

happen first. In the following statements, num will first be incremented to 5, then cout will display 5:

num = 4;

cout << ++num;

Program 5-2 illustrates these dynamics further by placing increment and decrement operators in cout

statements. This makes it easy to see the difference between using them in prefix and postfix mode.

However, this should not normally be done. That is, in actual programming applications it is not

recommended to place increment or decrement operators in cout statements. So you should not write

code like this.

Program 5-2

1 // This program demonstrates the postfix and prefix

2 // modes of the increment and decrement operators.

3 #include <iostream>

4 using namespace std;

5

6 int main()

7 {

8 int num = 4;

9

10 // Illustrate postfix and prefix ++ operator

11 cout << num << " "; // Displays 4

12 cout << num++ << " "; // Displays 4, then adds 1 to num

13 cout << num << " "; // Displays 5

14 cout << ++num << "\n\n"; // Adds 1 to num, then displays 6

15

16 // Illustrate postfix and prefix -- operator

17 cout << num << " "; // Displays 6

18 cout << num-- << " "; // Displays 6, then subtracts 1 from num

19 cout << num << " "; // Displays 5

20 cout << --num << "\n\n"; // Subtracts 1 from num, then displays 4

21

22 return 0;

23 }

Program Output

4 4 5 6

6 6 5 4

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

5

For another example, look at the following code:

int x = 1;

int y;

y = x++; // Postfix increment

The first statement defines the variable x (initialized with the value 1) and the second statement

defines the variable y. The third statement does two things:

• It assigns the value of x to the variable y.

• The variable x is incremented.

The value that will be stored in y depends on when the increment takes place. Because the ++

operator is used in postfix mode, the old value of x (which is 1) is assigned to y before x is

incremented. After the statement executes, y will contain 1, and x will contain 2. Let's look at the

same code, but with the ++ operator used in prefix mode:

int x = 1;

int y;

y = ++x; // Prefix increment

In the third statement, the ++ operator is used in prefix mode, causing variable x to be incremented

before the assignment takes place. So, this code will store 2 in y. After the code has executed, x and y

will both contain 2.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

1

 ++Cبرمجة بلغة ال

9.1. Using ++ and -- in Mathematical Expressions:

The increment and decrement operators can also be used on variables in mathematical expressions.

Consider the following program segment:

a = 2;

b = 5;

c = a * b++;

cout << a << " " << b << " " << c;

In the statement c = a * b++, c is assigned the value of a times b, which is 10. The variable b is then

incremented. The cout statement will display

2 6 10

If the statement were changed to read

c = a * ++b;

the variable b would be incremented before it was multiplied by a. In this case c would be assigned

the value of 2 times 6, so the cout statement would display

2 6 12

You can pack a lot of action into a single statement using the increment and decrement operators, but

don’t get too tricky with them. You might be tempted to try something like the following, thinking that

c will be assigned 11:

a = 2;

b = 5;

c = ++(a * b); // Error!

9.2. Formatted Output and Input functions:

The three primary activities of a program are input, processing, and output.

Computer programs typically perform a three-step process of gathering input, performing

some process on the information gathered, and then producing output.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

2

Input is information a program collects from the outside world. It can be sent to the program by the

user, who is entering data at the keyboard or using the mouse. It can also be read from disk files or

hardware devices connected to the computer.

Once information is gathered from the outside world, a program usually processes it in

some manner.

Output is information that a program sends to the outside world. It can be words or graphics

displayed on a screen, a report sent to the printer, data stored in a file, or information sent to

any device connected to the computer.

9.2.1. The cin function:

 cin can be used to read data typed at the keyboard.

For example, a program that calculates the area of a circle might ask the user to enter the circle’s

radius. When the circle area has been computed and printed, the program could be run again and a

different radius could be entered. Program 5-3 shows cin being used to read values input by the user.

Program 5-3

1 // This program calculates and displays the area of a rectangle.

2 #include <iostream>

3 using namespace std;

4

5 int main()

6 {

7 int length, width, area;

8

9 cout << "This program calculates the area of a rectangle.\n";

10

11 // Have the user input the rectangle's length and width

12 cout << "What is the length of the rectangle? ";

13 cin >> length;

14 cout << "What is the width of the rectangle? ";

15 cin >> width;

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

3

16

17 // Compute and display the area

18 area = length * width;

19 cout << "The area of the rectangle is " << area << endl;

20 return 0;

21 }

Program Output with Example Input Shown in Bold

This program calculates the area of a rectangle.

What is the length of the rectangle? 10[Enter]

What is the width of the rectangle? 20[Enter]

The area of the rectangle is 200.

Instead of calculating the area of one rectangle, this program can be used to compute the area of any

rectangle. The values that are stored in the length and width variables are entered by the user when the

program is running. Look at lines 12 and 13.

cout << "What is the length of the rectangle? ";

cin >> length;

In line 12 cout is used to display the question “What is the length of the rectangle?” This is called a

prompt. It lets the user know that an input is expected and prompts them as to what must be entered.

When cin will be used to get input from the user, it should always be preceded by a prompt.

Gathering input from the user is normally a two-step process:

1. Use cout to display a prompt on the screen.

2. Use cin to read a value from the keyboard.

The prompt should ask the user a question, or tell the user to enter a specific value.

Notice that the << and >> operators appear to point in the direction that data is flowing. It may help

to think of them as arrows. In a statement that uses cout, the << operator always points toward cout,

as shown here. This indicates that data is flowing from a variable or a literal to the cout object.

cout << "What is the length of the rectangle? ";

cout ← "What is the length of the rectangle? ";

In a statement that uses cin, the >> operator always points toward the variable receiving

the value. This indicates that data is flowing from the cin object to a variable.

cin >> length;

cin → length;
The cin object causes a program to wait until data is typed at the keyboard and the [Enter] key is

pressed. No other lines will be executed until cin gets its input.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

4

• Entering Multiple Values: You can use cin to input multiple values at once. Look at Program

5-4, which is a modified version of Program 5-3.

Program 5-4

1 // This program calculates and displays the area of a rectangle.

2 #include <iostream>

3 using namespace std;

4

5 int main()

6 {

7 int length, width, area;

8

9 cout << "This program calculates the area of a rectangle.\n";

10

11 // Have the user input the rectangle's length and width

12 cout << "Enter the length and width of the rectangle ";

13 cout << "separated by a space.\n";

14 cin >> length >> width;

15

16 // Compute and display the area

17 area = length * width;

18 cout << "The area of the rectangle is " << area << endl;

19 return 0;

20 }

Program Output with Example Input Shown in Bold

This program calculates the area of a rectangle.

Enter the length and width of the rectangle separated by a space.

10 20[Enter]

The area of the rectangle is 200

Line 14 waits for the user to enter two values. The first is assigned to length and the second

to width.

cin >> length >> width;
In the example output, the user entered 10 and 20, so 10 is stored in length and 20 is stored in width.

Notice the user separates the numbers by spaces as they are entered. This is how cin

knows where each number begins and ends. It doesn’t matter how many spaces are entered

between the individual numbers. For example, the user could have entered

10 20
NOTE: The [Enter] key is pressed after the last number is entered. cin also can read multiple values

of different data types.

9.2.2. The cout function:

 cout is used to display information on the computer’s screen.

To print a message on the screen, you send a stream of characters to cout. Look to the next line:

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

5

cout << "Programming is great fun!";

The item immediately to the right of the operator is sent to cout and then displayed on the screen.

Program 5-5 shows another way to write the same string “Programming is great fun!".

Program 5-5

1 // A simple C++ program

2 #include <iostream>

3 using namespace std;

4

5 int main()

6 {

7 cout << "Programming is " << "great fun!";

8 return 0;

9 }

Program Output

Programming is great fun!

The next program shows yet another way to accomplish the same thing.

Program 5-6

1 // A simple C++ program

2 #include <iostream>

3 using namespace std;

4

5 int main()

6 {

7 cout << "Programming is ";

8 cout << "great fun!";

9 return 0;

10 }

Program Output

Programming is great fun!
An important concept to understand about Program 5-6 is that although the output is broken

into two programming statements, this program will still display the message on a single line.

Unless you specify otherwise, the information you send to cout is displayed in a continuous

stream. Sometimes this can produce less-than-desirable results. Program 5-7 illustrates this.

Program 5-7

1 // An unruly printing program

2 #include <iostream>

3 using namespace std;

4

5 int main()

6 {

7 cout << "The following items were top sellers";

8 cout << "during the month of June:";

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

6

9 cout << "Computer games";

10 cout << "Coffee";

11 cout << "Aspirin";

12 return 0;

13 }

Program Output

The following items were top sellersduring the month of June:Computer

gamesCoffeeAspirin
The layout of the actual output looks nothing like the arrangement of the strings in the source code.

First, notice there is no space displayed between the words “sellers” and “during,” or between “June:”

and “Computer.” cout displays messages exactly as they are sent. If spaces are to be displayed, they

must appear in the strings.

Second, even though the output is broken into five lines in the source code, it comes out as

one long line of output. Because the output is too long to fit on one line of the screen, it

wraps around to a second line when displayed. The reason the output comes out as one

long line is that cout does not start a new line unless told to do so.

There are two ways to instruct cout to start a new line.

The first is to send cout a stream manipulator called endl (pronounced “end-line” or “end-L”).

Another way to cause subsequent output to begin on a new line is to insert a \n in the string that is

being output. Program 5-8 does this.

Program 5-8

1 // Another well-adjusted printing program

2 #include <iostream>

3 using namespace std;

4

5 int main()

6 {

7 cout << "The following items were top sellers\n";

8 cout << "during the month of June:\n";

9 cout << "Computer games\nCoffee";

10 cout << "\nAspirin\n";

11 return 0;}

\n is an example of an escape sequence. Escape sequences are written as a backslash character (\)

followed by one or more control characters and are used to control the way output is displayed. There

are many escape sequences in C++. The newline escape sequence (\n) is just one of them.

Escape sequences give you the ability to exercise greater control over the way information is output by

your program. Table 5-1 lists a few of them.

Program Output

 The following items were top sellers

 during the month of June:

 Computer games

 Coffee

 Aspirin

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

7

Table 5-1: Common Escape Sequences

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

1

 ++Cبرمجة بلغة ال

10. Condition Statements

10.1. The if Statement

 The if statement can cause other statements to execute only under certain conditions. Programs often

need more than one path of execution, however. Many algorithms require a program to execute some

statements only under certain circumstances. This can be accomplished with a decision structure.

In a decision structure’s simplest form a specific action, or set of actions, is taken only when a

specific condition exists. If the condition does not exist, the actions are not performed. The flowchart

in Figure 6-1 shows the logic of a decision structure with syntax. The diamond symbol represents a

yes/no question or a true/false condition. If the answer to the question is yes (or if the condition is

true), the program flow follows one path which leads to the actions being performed. If the answer to

the question is no (or the condition is false), the program flow follows another path which skips the

actions.

Figure 6-1

Program 6-1 illustrates the use of an if statement. The user enters three test scores and the

program calculates their average. If the average equals 100, the program congratulates the

user on earning a perfect score.

Program 6-1

1 // This program correctly averages 3 test scores.

2 #include <iostream>

3 #include <iomanip>

4 using namespace std;

5

6 int main()

7 {

8 int score1, score2, score3;

9 double average;

10

12 // Get the three test scores

13 cout << "Enter 3 test scores and I will average them: ";

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

2

13 cin >> score1 >> score2 >> score3;

14

15 // Calculate and display the average score

16 average = (score1 + score2 + score3) / 3.0;

17 cout << fixed << showpoint << setprecision(1);

18 cout << "Your average is " << average << endl;

19

20 // If the average equals 100, congratulate the user

21 if (average == 100)

22 { cout << "Congratulations! ";

23 cout << "That's a perfect score!\n";

24 }

25 return 0;

26 }

Let’s look more closely at lines 21–24 of Program 6-1, which cause the congratulatory message to

be printed.

if (average == 100)

{ cout << "Congratulations! ";

 cout << "That's a perfect score!\n";

}

There are four important things to notice.

First, the word if, which begins the statement, is a C++ key word and must be written in lowercase.

Second, the condition to be tested (average == 100) must be enclosed inside parentheses.

Third, there is no semi-colon after the test condition, even though there is a semi-colon after each

action associated with the if construct. We will explain why shortly.

And finally, the block of statements to be conditionally executed is surrounded by curly braces. This is

required whenever two or more actions are associated with an if statement.

If the block of statements to be conditionally executed contains only one statement, the

braces can be omitted.

Table 6.1 Example if Statements

Program Output with Example Input Shown in Bold

 Enter 3 test scores and I will average them: 80 90 70[Enter]

 Your average is 80.0

Program Output with Other Example Input Shown in Bold

 Enter 3 test scores and I will average them: 100 100 100[Enter]

 Your average is 100.0

 Congratulations! That's a perfect score!

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

3

10.1.1. Programming Style and the if Statement

Even though if statements usually span more than one line, they are technically one long statement.

For instance, the following if statements are identical except in style:

if (a >= 100)

 cout << "The number is out of range.\n";

if (a >= 100) cout << "The number is out of range.\n";

Here are two important style rules you should adopt for writing if statements:

• The conditionally executed statement(s) should begin on the line after the if statement.

• The conditionally executed statement(s) should be indented one “level” from the if statement.

10.1.2. Three Common Errors to Watch Out For
When writing if statements, there are three common errors you must watch out for.

1. Misplaced semicolons

2. Missing braces

3. Confusing = with ==

10.2. The if/else Statement

The if/else statement will execute one set of statements when the if condition is true, and another

set when the condition is false.

The if/else statement is an expansion of the if statement. Figure 6-2 shows the general

format of this statement and a flowchart visually depicting how it works.

Figure 6-2

As with the if statement, a condition is tested. If the condition is true, a block containing one or more

statements is executed. If the condition is false, however, a different group of statements is executed.

Program 6-2 uses the if/else statement along with the modulus operator to determine if a number is

odd or even.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

4

Program 6-2

1 // This program uses the modulus operator to determine

2 // if a number is odd or even. If the number is evenly divisible

3 // by 2, it is an even number. A remainder indicates it is odd.

4 #include <iostream>

5 using namespace std;

6

7 int main()

8 {

9 int number;

10

11 cout << "Enter an integer and I will tell you if it\n";

12 cout << "is odd or even. ";

13 cin >> number;

14

15 if (number % 2 == 0)

16 cout << number << " is even.\n";

17 else

18 cout << number << " is odd.\n";

19 return 0;}

As with the if part, if you don’t use braces the else part controls a single statement. If you wish to

execute more than one statement with the else part, place these statements inside a set of braces.

Program 6-3 illustrates this. It also illustrates a way to handle a classic programming problem:

division by zero.

Division by zero is mathematically impossible to perform and it normally causes a program to crash.

This means the program will prematurely stop running, sometimes with an error message.

Program 6-3 shows a way to test the value of a divisor before the division takes place. On line 15 the

value of num2 is tested. If the user enters anything other than zero, the lines controlled by the if are

executed, allowing the division to be performed and the result to be displayed. But if the user enters a

zero for num2, the lines controlled by the else are executed instead, causing an error message to be

displayed.

Program 6-3

1 // This program makes sure that the divisor is not

2 // equal to 0 before it performs a divide operation.

3 #include <iostream>

4 using namespace std;

5

6 int main()

7 {

8 double num1, num2, quotient;

9

10 // Get the two numbers

11 cout << "Enter two numbers: ";

12 cin >> num1 >> num2;

13

Program Output with Example Input Shown in Bold

Enter two numbers: 10 0[Enter]

Division by zero is not possible.

Please run the program again and enter a number other than zero.

Program Output with Example Input Shown in Bold

 Enter an integer and I will tell you if it

 is odd or even. 17[Enter]

 17 is odd.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل ++Cبرمجة بلغة المادة:

5

14 // If num2 is not zero, perform the division.

15 if (num2 != 0)

16 {

17 quotient = num1 / num2;

18 cout << "The quotient of " << num1 << " divided by "

19 << num2 << " is " << quotient << ".\n";

20 }

21 else

22 {

23 cout << "Division by zero is not possible.\n"

24 << "Please run the program again and enter "

25 << "a number other than zero.\n";

26 }

27 return 0;

28 }

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 11برمجة بلغة المادة:

1

 ++Cبرمجة بلغة ال

11.1. The if/else if Statement

The if/else if statement is a chain of if statements. They perform their tests, one after the other, until

one of them is found to be true.

We make certain mental decisions by using sets of different but related rules.

This type of decision making is also very common in programming. In C++ it can be accomplished

through the if/else if statement. Figure 6-3 shows its format and a flowchart visually depicting how it

works.

Figure 6-3

This construction is like a chain of if/else statements. The else part of one statement is

linked to the if part of another. When put together this way, the chain of if/elses

becomes one long statement. Program 6-4 shows an example. The user is asked to enter a

numeric test score and the program displays the letter grade earned.

Program 6-4

1 // This program uses an if/else if statement to assign a

2 // letter grade (A, B, C, D, or F) to a numeric test score.

3 #include <iostream>

4 using namespace std;

5

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 11برمجة بلغة المادة:

2

6 int main()

7 {

8 int testScore; // Holds a numeric test score

9 char grade; // Holds a letter grade

10

11 // Get the numeric score

12 cout << "Enter your numeric test score and I will\n";

13 cout << "tell you the letter grade you earned: ";

14 cin >> testScore;

15

16 // Determine the letter grade

17 if (testScore < 60)

18 grade = 'F';

19 else if (testScore < 70)

20 grade = 'D';

21 else if (testScore < 80)

22 grade = 'C';

23 else if (testScore < 90)

24 grade = 'B';

25 else if (testScore <= 100)

26 grade = 'A';

27

28 // Display the letter grade

29 cout << "Your grade is " << grade << ".\n";

30 return 0;

31 }

Program Output with Example Input Shown in Bold

Enter your numeric test score and I will

tell you the letter grade you earned: 88[Enter]

Your grade is B.

Figure 6-4 shows the paths that may be taken by the if/else if statement in previous program.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 11برمجة بلغة المادة:

3

Figure 6-4

11.2. Nested if Statements
To test more than one condition, an if statement can be nested inside another if statement.

It is possible for one if statement or if/else statement to be placed inside another one.

This construct, called a nested if, allows you to test more than one condition to determine which block

of code should be executed. For example, consider a banking program that determines whether a bank

customer qualifies for a special, low interest rate on a loan. To qualify, two conditions must exist:

1. The customer must be currently employed.

2. The customer must have recently graduated from college (in the past two years).

Figure 6-5 shows a flowchart for an algorithm that could be used in such a program.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 11برمجة بلغة المادة:

4

Figure 6-5

Program 6-5 shows the code that corresponds to the logic of the flowchart. It nests one if/else

statement inside another one.

Program 6-5

1 // This program determines whether a loan applicant qualifies for

2 // a special loan interest rate. It uses nested if/else statements.

3 #include <iostream>

4 using namespace std;

5

6 int main()

7 {

8 char employed, // Currently employed? (Y or N)

9 recentGrad; // Recent college graduate? (Y or N)

10

11 // Is the applicant employed and a recent college graduate?

12 cout << "Answer the following questions\n";

13 cout << "with either Y for Yes or N for No.\n";

14

15 cout << "Are you employed? ";

16 cin >> employed;

17 cout << "Have you graduated from college in the past two years? ";

18 cin >> recentGrad;

19

20 // Determine the applicant's loan qualifications

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 11برمجة بلغة المادة:

5

21 if (employed == 'Y')

22 {

23 if (recentGrad == 'Y') // Employed and a recent grad

24 {

25 cout << "You qualify for the special interest rate.\n";

26 }

27 else // Employed but not a recent grad

28 {

29 cout << "You must have graduated from college in the past\n";

30 cout << "two years to qualify for the special interest rate.\n";

31 }

32 }

33 else // Not employed

34 {

35 cout << "You must be employed to qualify for the "

36 << "special interest rate. \n";

37 }

38 return 0;

39 }

Program Output with Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? N[Enter]

Have you graduated from college in the past two years? Y[Enter]

You must be employed to qualify for the special interest rate.

Program Output with Other Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y[Enter]

Have you graduated from college in the past two years? N[Enter]

You must have graduated from college in the past

two years to qualify for the special interest rate.

Program Output with Other Example Input Shown in Bold

Answer the following questions

with either Y for Yes or N for No.

Are you employed? Y[Enter]

Have you graduated from college in the past two years? Y[Enter]

You qualify for the special interest rate.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 11برمجة بلغة المادة:

6

Figure 6-6

11.3. The switch Statement

 The switch statement lets the value of a variable or expression determine where the program

will branch to.

A branch occurs when one part of a program causes another part to execute. The if/else if statement

allows your program to branch into one of several possible paths. It performs a series of tests (usually

relational) and branches when one of these tests is true. The switch statement is a similar mechanism.

It, however, tests the value of an integer expression and then uses that value to determine which set of

statements to branch to. Here is the format of the switch statement:

switch (IntegerExpression)

{

case ConstantExpression: // Place one or more

// statements here

case ConstantExpression: // Place one or more

// statements here

// case statements may be repeated

// as many times as necessary

default: // Place one or more

// statements here

}
The first line of the statement starts with the word switch, followed by an integer expression inside

parentheses. This can be either of the following:

• A variable of any of the integer data types (including char).

• An expression whose value is of any of the integer data types.

On the next line is the beginning of a block containing several case statements. Each case statement is

formatted in the following manner:

case ConstantExpression: // Place one or more

// statements here

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 11برمجة بلغة المادة:

7

After the word case is a constant expression (which must be of an integer type such as an int or char),

followed by a colon. The constant expression can be either an integer literal or an integer named

constant. The expression cannot be a variable and it cannot be a Boolean expression such as x <

22 or n == 25. The case statement marks the beginning of a section of statements. These statements

are branched to if the value of the switch expression matches that of the case expression.

Program 6-6 shows how a simple switch statement works.

Program 6-6

1 // This program demonstrates the use of a switch statement.

2 // The program simply tells the user what character they entered.

3 #include <iostream>

4 using namespace std;

5

6 int main()

7 {

8 char choice;

9

10 cout << "Enter A, B, or C: ";

11 cin >> choice;

12

13 switch (choice)

14 {

15 case 'A':cout << "You entered A.\n";

16 break;

17 case 'B':cout << "You entered B.\n";

18 break;

19 case 'C':cout << "You entered C.\n";

20 break;

21 default: cout << "You did not enter A, B, or C!\n";

22 }

23 return 0;

24 }

Program Output with Example Input Shown in Bold

Enter A, B, or C: B[Enter]

You entered B.

Program Output with Different Example Input Shown in Bold

Enter A, B, or C: F[Enter]

You did not enter A, B, or C!

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 12برمجة بلغة المادة:

1

 ++Cبرمجة بلغة ال

Repetition Statements

12.1. The for Loop

The for loop is a pretest loop that combines the initialization, testing, and updating of a loop

control variable in a single loop header.

In general, there are two categories of loops: conditional loops and count-controlled loops.

A conditional loop executes as long as a particular condition exists. For example, an input

validation loop executes as long as the input value is invalid. When you write a conditional

loop, you have no way of knowing the number of times it will iterate.

Sometimes you know the exact number of iterations that a loop must perform. A loop

that repeats a specific number of times is known as a count-controlled loop. For example,

if a loop asks the user to enter the sales amounts for each month in the year, it will

iterate twelve times. In essence, the loop counts to twelve and asks the user to enter a

sales amount each time it makes a count. A count-controlled loop must possess three

elements:

1. It must initialize a counter variable to a starting value.

2. It must test the counter variable by comparing it to a final value. When the counter

variable reaches its final value, the loop terminates.

3. It must update the counter variable during each iteration. This is usually done by

incrementing the variable.

Count-controlled loops are so common that C++ provides a type of loop specifically for

them. It is known as the for loop. The for loop is specifically designed to initialize, test,

and update a counter variable. Here is the format of the for loop.

for (initialization; test; update)

{

statement;

statement;

// Place as many statements

// here as necessary.

}

if there is only one statement in the loop body, the braces may be omitted.

The first line of the for loop is the loop header. After the key word for, there are three expressions

inside the parentheses, separated by semicolons. (Notice there is no semicolon after the third

expression.) The first expression is the initialization expression. It is typically used to initialize a

counter to its starting value. This is the first action performed by the loop and it is only done once.

The second expression is the test expression. It tests a condition in the same way the test expression

in the while and do-while loop does, and controls the execution of the loop. As long as this condition is

true, the body of the for loop will repeat. The for loop is a pretest loop, so it evaluates the test

expression before each iteration.

The third expression is the update expression. It executes at the end of each iteration.

Typically, this is a statement that increments the loop’s counter variable.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 12برمجة بلغة المادة:

2

Here is an example of a simple for loop that prints “Hello” five times:

for (count = 1; count <= 5; count++)

 cout << "Hello" << endl;
Figure 7-1 illustrates the sequence of events that take place during the loop’s execution.

Notice that Steps 2 through 4 are repeated as long as the test expression is true.

Figure 7-1

Figure 7-2 shows the loop’s logic in the form of a flowchart.

Figure 7-2

Program 7-1 displays the numbers 1–5 and their squares by using a for loop.

Program 7-1

1 // This program uses a for loop to display the numbers 1-5 and their squares.

2 #include <iostream>

3 #include <iomanip>

4 using namespace std;

5 int main()

6 { int num;

7 cout << "Number Square\n";

8 cout << "--------------\n";

9 for (num = 1; num <= 5; num++)

10 cout << setw(4) << num << setw(7) << (num * num) << endl;

11 return 0;

12}

Program Output

Number Squared

1 1

2 4

3 9

4 16

5 25

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 12برمجة بلغة المادة:

3

• The for Loop is a Pretest Loop

Because the for loop tests its test expression before it performs an iteration, it is possible to write a for

loop in such a way that it will never iterate. Here is an example:

for (count = 11; count <= 10; count++)

 cout << "Hello" << endl;
Because the variable count is initialized to a value that makes the test expression false from the

beginning, this loop terminates as soon as it begins.

• Avoid Modifying the Counter Variable in the Body of the for Loop

Be careful not to place a statement that modifies the counter variable in the body of the for loop. All

modifications of the counter variable should take place in the update expression, which is

automatically executed at the end of each iteration. If a statement in the body of the loop also modifies

the counter variable, the loop will probably not terminate when you expect it to. The following loop,

for example, increments x twice for each iteration:

for (x = 1; x <= 10; x++)

 {

 cout << x << endl;

 x++; // Wrong!

 }

• Other Forms of the Update Expression

You are not limited to incrementing the loop control variable by just 1 in the update expression. Here

is a loop that displays all the even numbers from 2 through 100 by adding 2 to its counter:

for (num = 2; num <= 100; num += 2)

 cout << num << endl;
And here is a loop that counts backward from 10 down to 0:

for (num = 10; num >= 0; num--)

 cout << num << endl;

• Defining a Variable in the for Loop’s Initialization Expression

Not only may the counter variable be initialized in the initialization expression, it may be defined there

as well. The following code shows an example. This is a modified version of the loop in Program 5-9.

for (int num = 1; num <= 5; num++)

 cout << setw(4) << num << setw(7) << (num * num) << endl;
In this loop, the num variable is both defined and initialized in the initialization expression.

If the counter variable is used only in the loop, it is considered good programming practice to define it

in the loop header. This makes the variable’s purpose clearer.

When a variable is defined in the initialization expression of a for loop, the scope of the variable is

limited to the loop. This means you cannot access the variable in statements outside the loop. For

example, the following program segment will not compile because the last cout statement cannot

access the variable count.

for (int count = 1; count <= 10; count++)

 cout << count << endl;

cout << "count is now " << count << endl; // ERROR!

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 12برمجة بلغة المادة:

4

• Creating a User-Controlled for Loop

In next program we allow the user to control how many times a loop should iterate by having the user

enter the final value for the counter variable. The following program segment illustrates this.

// Get the final counter value

cout << "How many times should the loop execute? ";

cin >> finalValue;

for (int num = 1; num <= finalValue; num++)

{

// Statements in the loop body go here.

}

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 13برمجة بلغة المادة:

1

Repetition Statements

13.1. The while Loop

The while loop has two important parts:

(1) an expression that is tested for a true or false value, and

(2) a statement or block that is repeated as long as the expression is true.

Next figure shows the general format of the while loop and a flowchart visually depicting

how it works.

Figure 8-1

Let's look at each part of the while loop. The first line, sometimes called the loop header, consists of

the key word while followed by a condition to be tested enclosed in parentheses.

The condition is expressed by any expression that can be evaluated as true or false. Next comes the

body of the loop. This contains one or more C++ statements.

Here's how the loop works. The condition expression is tested, and if it is true, each statement in the

body of the loop is executed. Then, the condition is tested again. If it is still true, each statement is

executed again. This cycle repeats until the condition is false.

Notice that, as with an if statement, each statement in the body to be conditionally executed ends with

a semicolon, but there is no semicolon after the condition expression in parentheses. This is

because the while loop is not complete without the statements that follow it.

Next program uses a while loop to print “Hello” five times.

Program 8-1

1 // This program demonstrates a simple while loop.

2 #include <iostream>

3 int main()

5 {

6 int number = 1;

7 while (number <= 5)

8 {

9 cout << "Hello ";

10 number++;

11 }

12 cout << "\nThat's all!\n";

13 return 0;}

Program Output

 Hello Hello Hello Hello Hello

 That's all!

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 13برمجة بلغة المادة:

2

Let's take a closer look at this program. In line 6 an integer variable number is defined and initialized

with the value 1. In line 7 the while loop begins with this statement:

while (number <= 5)

This statement tests the variable number to determine whether its value is less than or equal

to 5. Because it is, the statements in the body of the loop (lines 9 and 10) are executed:

cout << "Hello ";

number++;

The statement in line 9 prints the word “Hello”. The statement in line 10 uses the increment

operator to add one to number, giving it the value 2. This is the last statement in the body of the loop,

so after it executes the loop starts over. It tests the expression number <= 5 again, and because it is

still true, the statements in the body of the loop are executed again. This cycle repeats until the value of

number equals 6, making the expression number <= 5 false. Then the loop is exited. This is

illustrated in Figure 8-2.

Figure 8-2

1. While is a Pretest Loop

The while loop is known as a pretest loop, which means it tests its expression before each iteration.

Notice the variable definition of number in line 6 of Program 8-1:

int number = 1;

The number variable is initialized with the value 1. If number had been initialized with a value

greater than 5, as shown in the following program segment, the loop would never execute:

int number = 6;

while (number <= 5)

{

cout << "Hello ";

number++;

}
An important characteristic of the while loop is that the loop will never iterate if the test expression

is false to start with. If you want to be sure a while loop executes the first time, you must initialize the

relevant data in such a way that the test expression starts out as true.

2. Infinite Loops

In all but rare cases, loops must contain within themselves a way to terminate. This means that

something inside the loop must eventually make the test expression false. The loop in Program 8-1

stops when the expressions number <= 5 is false. If a loop does not have a way of stopping, it is

called an infinite loop. Infinite loops keep repeating until the program is interrupted. Here is an

example:

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 13برمجة بلغة المادة:

3

int number = 1;

while (number <= 5)

{cout << "Hello ";}
This is an infinite loop because it does not contain a statement that changes the value of the number

variable. Each time the expression number <= 5 is tested, number will contain the value 1.

It's also possible to create an infinite loop by accidentally placing a semicolon after the first line of the

while loop. Here is an example:

int number = 1;

while (number <= 5); // This semicolon is an ERROR!

{cout << "Hello ";

 number++;}

3. Don’t Forget the Braces with a Block of Statements

If you write a loop that conditionally executes a block of statements, don't forget to enclose all of the

statements in a set of braces. If the braces are accidentally left out, the while statement conditionally

executes only the very next statement. For example, look at the following code.

int number = 1;

// This loop is missing its braces!

while (number <= 5)

cout << "Hello ";

number++;

In this code the number++ statement is not in the body of the loop. Because the braces are missing,

the while statement only executes the statement that immediately follows it. This loop will execute

infinitely because there is no code in its body that changes the number variable.

Another common pitfall with loops is accidentally using the = operator when you intend to use the ==
operator.

Remember, any nonzero value is evaluated as true.

4. Using the while Loop for Input Validation

The while loop can be used to create input routines that repeat until acceptable data is entered.

Input validation is the process of inspecting data given to a program by the user and determining if it

is valid.

The while loop is especially useful for validating input. If an invalid value is entered, a

loop can require that the user re-enter it as many times as necessary. For example, the

following loop asks for a number in the range of 1 through 100:

cout << "Enter a number in the range 1 - 100: ";

cin >> number;

while ((number < 1) || (number > 100))

{cout << "ERROR: Enter a value in the range 1 - 100: ";

 cin >> number;}

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 13برمجة بلغة المادة:

4

The general logic of performing input validation is shown in Figure 8-3.

Figure 8-3

Program 8-2 calculates the number of soccer teams a youth league may create, based on a given

number of players and a maximum number of players per team. The program uses while loops (in lines

20 through 25 and lines 31 through 35) to validate the user’s input.

Program 8-2

1 // This program calculates the number of soccer teams a youth

2 // league may create from the number of available players.

3 // Input validation is done with while loops.

4 #include <iostream>

5 using namespace std;

6

7 int main()

8 {

9 int players, // Number of available players

10 teamPlayers, // Number of desired players per team

11 numTeams, // Number of teams

12 leftOver; // Number of players left over

13

14 // Get the number of players per team

15 cout << "How many players do you wish per team?\n";

16 cout << "(Enter a value in the range 9 - 15): ";

17 cin >> teamPlayers;

18

19 // Validate the input

20 while ((teamPlayers) < 9) || (teamPlayers > 15))

21 {

22 cout << "Team size should be 9 to 15 players.\n";

23 cout << "How many players do you wish per team? ";

24 cin >> teamPlayers;

25 }

26 // Get the number of players available

27 cout << "How many players are available? ";

28 cin >> players;

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 13برمجة بلغة المادة:

5

29

30 // Validate the input

31 while (players <= 0)

32 {

33 cout << "Please enter a positive number: ";

34 cin >> players;

35 }

36 // Calculate the number of teams

37 numTeams = players / teamPlayers;

38

39 // Calculate the number of leftover players

40 leftOver = players % teamPlayers;

41

42 // Display the results

43 cout << "\nThere will be " << numTeams << " teams with ";

44 cout << leftOver << " players left over.\n";

45 return 0;

46 }

Program Output with Example Input Shown in Bold

How many players do you wish per team?

(Enter a value in the range 9 - 15): 4[Enter]

Team size should be 9 to 15 players.

How many players do you wish per team? 12[Enter]

How many players are available? –142[Enter]

Please enter a positive number: 142[Enter]

There will be 11 teams with 10 players left over.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 14برمجة بلغة المادة:

1

Repetition Statements

14.1. The do-while Loop

The do-while loop is a posttest loop, which means its expression is tested after each iteration.

In addition to the while loop, C++ also offers the do-while loop. The do-while loop looks similar to a

while loop turned upside down. Figure 8-4 shows its format and a flowchart visually depicting how it

works.

Figure 8-4

As with the while loop, if there is only one conditionally executed statement in the loop body, the

braces may be omitted.

NOTE: The do-while loop must be terminated with a semicolon after the closing parenthesis of

the test expression.

Besides the way it looks, the difference between the do-while loop and the while loop is that do-while

is a post test loop. It tests its expression after each iteration is complete.

This means do-while always performs at least one iteration, even if the test expression is false at the

start. For example, in the following while loop the cout statement will not execute at all:

int x = 1;

while (x < 0)

cout << x << endl;

But the cout statement in the following do-while loop will execute once because the do-while loop

does not evaluate the expression x < 0 until the end of the iteration.

int x = 1;

do

cout << x << endl;

while (x < 0);
You should use the do-while loop when you want to make sure the loop executes at least once.

For example, Program 8-3 computes and displays the average of a set of test scores before asking if the

user wants to repeat the process with another set of scores. As with the while loop, a do-while loop can

be written to iterate a set number of times or to allow the user to control how many times to loop.

Program 8-3 illustrates another method for letting the user control the loop. It will repeat as long as the

user enters a Y or y for yes.

Program 8-3

1 // This program averages 3 test scores. It uses a do-while loop

2 // that allows the code to repeat as many times as the user wishes.

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 14برمجة بلغة المادة:

2

3 #include <iostream>

4 using namespace std;

5

6 int main()

7 {

8 int score1, score2, score3; // Three test scores

9 double average; // Average test score

10 char again; // Loop again? Y or N

11

12 do

13 { // Get three test scores

14 cout << "\nEnter 3 scores and I will average them: ";

15 cin >> score1 >> score2 >> score3;

16

17 // Calculate and display the average

18 average = (score1 + score2 + score3) / 3.0;

19 cout << "The average is " << average << ".\n";

20

21 // Does the user want to average another set?

22 cout << "Do you want to average another set? (Y/N) ";

23 cin >> again;

24 } while ((again == 'Y') || (again == 'y'));

25 return 0;}

14.2. Using do-while with Menus

The do-while loop is a good choice for repeating a menu.

Program 8-4 is use a do-while loop to repeat the program until the user selects item 4 from the menu.

Program 8-4

1 // This menu-driven Health Club membership program carries out the

2 // appropriate actions based on the menu choice entered. A do-while loop

3 // allows the program to repeat until the user selects menu choice 4.

4 #include <iostream>

5 #include <iomanip>

6 using namespace std;

7

8 int main()

9 {

10 // Constants for membership rates

11 const double ADULT_RATE = 40.0;

12 const double CHILD_RATE = 20.0;

13 const double SENIOR_RATE = 30.0;

14

15 int choice; // Menu choice

16 int months; // Number of months

17 double charges; // Monthly charges

18

19 do

20 { // Display the menu and get the user's choice

Program Output with Example Input Shown in

Bold

Enter 3 scores and I will average them: 80 90

70[Enter]

The average is 80.

Do you want to average another set? (Y/N) y[Enter]

Enter 3 scores and I will average them: 60 75

88[Enter]

The average is 74.3333.

Do you want to average another set? (Y/N) n[Enter]

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 14برمجة بلغة المادة:

3

21 cout << "\n Health Club Membership Menu\n\n";

22 cout << "1. Standard Adult Membership\n";

23 cout << "2. Child Membership\n";

24 cout << "3. Senior Citizen Membership\n";

25 cout << "4. Quit the Program\n\n";

26 cout << "Enter your choice: ";

27 cin >> choice;

28

29 // Validate the menu selection

30 while ((choice < 1) || (choice > 4))

31 {

32 cout << "Please enter 1, 2, 3, or 4: ";

33 cin >> choice;

34 }

35 // Process the user's choice

36 if (choice != 4)

37 { cout << "For how many months? ";

38 cin >> months;

39

40 // Compute charges based on user input

41 switch (choice)

42 {

43 case 1: charges = months * ADULT_RATE;

44 break;

45 case 2: charges = months * CHILD_RATE;

46 break;

47 case 3: charges = months * SENIOR_RATE;

48 }

49 // Display the monthly charges

50 cout << fixed << showpoint << setprecision(2);

51 cout << "The total charges are $" << charges << endl;

52 }

53 } while (choice != 4); // Loop again if the user did not

54 // select choice 4 to quit

55 return 0;

56 }

14.3. Nested Loops
A loop that is inside another loop is called a nested loop. The first loop is called the outer loop. The

one nested inside it is called the inner loop. We can put loops one inside another to solve a certain

programming problems. Loops may be nested as follows:

Program Output with Example Input Shown in Bold

 Health Club Membership Menu

1. Standard Adult Membership

2. Child Membership

3. Senior Citizen Membership

4. Quit the Program

Enter your choice: 1[Enter]

For how many months? 12[Enter]

The total charges are $480.00

 Health Club Membership Menu

1. Standard Adult Membership

2. Child Membership

3. Senior Citizen Membership

4. Quit the Program

Enter your choice: 4[Enter]

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 14برمجة بلغة المادة:

4

Figure 8-5

Notice how the inner loop must be completely contained within the outer one.

 This is illustrated by the following two while loops.

 while (condition1) // Beginning of the outer loop

 { ------

 while (condition2) // Beginning of the inner loop

 {-------

 } // End of the inner loop

 } // End of the outer loop

When we have program averages test scores by asking the user to input the number of students and

the number of test scores per student. Next program show that:

Program 8-5

1. #include <iostream>

2. using namespace std;

3. int main()

4. {

5. int numStudents, // Number of students

6. numTests; // Number of tests per student

7. double average; // Average test score for a student

8. // Get the number of students

9. cout << "This program averages test scores.\n";

10. cout << "How many students are there? ";

11. cin >> numStudents;

12. // Get the number of test scores per student

13. cout << "How many test scores does each student have? ";

14. cin >> numTests;

15. cout << endl;

16. // Read each student's scores and compute their average

17. for (int snum = 1; snum <= numStudents; snum++) // Outer loop

18. { double total = 0.0; // Initialize accumulator

 السنة الاولى / قسم تقنيات انظمة الحاسوب المعهد التقني كربلاء / جامعة الفرات الاوسط التقنية

 اعداد: م.م. محمد ثجيل عبدالل C++ Lec 14برمجة بلغة المادة:

5

19. for (int test = 1; test <= numTests; test++) // Inner loop

20. { int score; // Read a score and add it to the accumulator

21. cout << "Enter score " << test << " for ";

22. cout << "student " << snum << ": ";

23. cin >> score;

24. total += score;

25. } // End inner loop

26. average = total / numTests; // Compute and display the student's average

27. cout << "The average score for student " << snum;

28. cout << " is " << average << "\n\n";

29. } // End outer loop

30. return 0;

31. } // End main function

Home work:

Write a program to prints a multiplication table?

Program Output with Example Input Shown in Bold

This program averages test scores.

How many students are there? 2[Enter]

How many test scores does each student have? 3[Enter]

Enter score 1 for student 1: 84[Enter]

Enter score 2 for student 1: 79[Enter]

Enter score 3 for student 1: 97[Enter]

The average for student 1 is 86.6667

Enter score 1 for student 2: 92[Enter]

Enter score 2 for student 2: 88[Enter]

Enter score 3 for student 2: 94[Enter]

The average for student 2 is 91.3333

C++برمجة بلغة ال

جامعة الفرات الأوسط التقنية

المعهد التقني كربلاء

قسم تقنيات أنظمة الحاسوب

السنة الاولىلطلبة

أعداد

محمد ثجيل عبدالله. م.م

2023-2022
1

Lecture (15)
Outline

• Introducing One dimensional Arrays

• Represent One Dimensional Array in C++

Introducing One dimensional Arrays
• An array is a compound data structures/data form that

can hold several values, all of one data type.

• An array works like a variable that can store a group of
values, all of the same type.

• An array is a fixed size sequential collection of elements
of identical types.

• Syntax(or general form):
Elements_Data_type Array_name[array_Size];

• The element in a one dimensional array are indexed by
the integers (0 to n- 1), where n is the size of the array.

• For example, an array can hold 60 type integer values
that represent five years of game sales data.

Prepared by : Mohammed Thajeelpage (1)

• To create a one dimensional array, you use a declaration
statement.

• A one dimensional array declaration should indicate three things:

1. The type of value to be stored in each element.

2. The name of the array.

3. The number of elements in the array.

• This is the general form for declaring an array:

Datatype ArrayName[ArraySize];

Datatype it is could be one of the primitive data structures in c++ like
(int, float, char, ... etc).

ArrayName Any name that is within the terms of naming variables.

ArraySize which is the number of elements, must be an integer
constant, such as 10 or a const value.

Represent One Dimensional Array in C++

Prepared by : Mohammed Thajeelpage (2)

• Example: int hours[6];

Or const int SIZE = 6;

int hours[SIZE];

- The name of this array is hours.

- The number inside the brackets is the array’s size declarator.

It indicates the number of elements, or values, the array

can hold.

543210index

1281523hours 6 values

hours [0] is the First element
hours [1] is the Second element
hours [2] is the Third element

Represent One Dimensional Array in C++ cont’d

Array name
Array Size

Data type

Prepared by : Mohammed Thajeelpage (3)

Accessing Array Elements

• The individual elements of a one dimensional array
are assigned unique subscripts/index. These
subscripts are used to access the elements.

• Even though an entire array has only one name, the
elements may be accessed and used as individual
variables. This is possible because each element is
assigned a number known as a subscript/index.

• The following statement stores the integer 30 in
hours[3]. Note that this is the fourth array element.

hours[3] = 30; // hours[3] now holds 30.

Represent One Dimensional Array in C++ cont’d

Array name Element value

Element index/subscript
Prepared by : Mohammed Thajeelpage (4)

• Why need to use array type?
Consider the following issue: "We have a list of
1000 students' marks of an integer type”

• Can you imagine how long we have to write the
declaration part by using normal variable
declaration?

We will declare something like the following:

int studMark0, studMark1, studMark2, ...,
studMark999;

• By using an array, we just declare like this:

int studMark[1000];

Represent One Dimensional Array in C++ cont’d

Prepared by : Mohammed Thajeelpage (5)

Thank you to your attention
and

Any Question

C++برمجة بلغة ال

جامعة الفرات الأوسط التقنية

المعهد التقني كربلاء

قسم تقنيات أنظمة الحاسوب

السنة الاولىلطلبة

أعداد

محمد ثجيل عبدالله. م.م

2022-2021
1

Lecture (16)
Outline

• Initialize One Dimensional Array in C++

• Inputting and Displaying One Dimensional Array
Contents in C++

• Processing Array Contents
• Copying One Array to Another
• Comparing Two Arrays

• Initializing all specified memory locations:
Arrays can be initialized at the time of declaration when their
initial values are known in advance.

Ex: int hours[6]={10,5,2,6,14,1};

• Partial array initialization:

Partial array initialization is possible in c language. If the
number of values to be initialized is less than the size of the
array, then the elements will be initialized to zero
automatically.

Ex: int hours[6]={10,5,2};

• Initialization without size:
Consider the declaration along with the initialization.

Ex: char b[]={'C','O','M','P','U'};

Initialize One Dimensional Array in C++

Prepared by : Mohammed Thajeelpage (6)

Inputting and Displaying One Dimensional Array Contents in C++

// This program stores employee work hours in an int array.
// It uses one for loop to input the hours and another for loop to
// display them.
#include <iostream>
int main() {
const int NUM_EMPLOYEES = 6;
int hours[NUM_EMPLOYEES]; // Holds hours worked for 6 employees
int count; // Loop counter
// Input hours worked by each employee
cout << "Enter the hours worked by " << NUM_EMPLOYEES << " employees: ";
for (count = 0; count < NUM_EMPLOYEES; count++)

cin >> hours[count];
// Display the contents of the array
cout << "The hours you entered are:";
for (count = 0; count < NUM_EMPLOYEES; count++)

cout << " " << hours[count];
cout << endl;
return 0;}

Prepared by : Mohammed Thajeelpage (7)

• Individual a one dimensional array elements are
processed like any other type of variable.

• For example, the following statement multiplies hours[3]
by the variable rate:

pay = hours[3] * rate;

• And the following are examples of pre-increment
and post-increment operations on array
elements:

int score[5] = {7, 8, 9, 10, 11};

++score[2]; // Pre-increment operation on the value in score[2]

score[4]++; // Post-increment operation on the value in score[4]

Processing One dimensional array contents

Prepared by : Mohammed Thajeelpage (8)

• You cannot simply assign one array to another
array. To copy the contents of one array to
another, you must assign each element of the
first array, one at a time, to the corresponding
element of the second array. The following code
segment uses a for loop to do this.

const int SIZE = 6;

int arrayA[SIZE] = {10, 20, 30, 40, 50, 60};

int arrayB[SIZE] = { 2, 4, 6, 8, 10, 12};

for (int index = 0; index < SIZE; index++)

arrayA[index] = arrayB[index];

Copying One Array to Another

Prepared by : Mohammed Thajeelpage (9)

• Just as you cannot copy one array to another with a single
statement, you also cannot compare the contents of two arrays
with a single statement.

• That is, you cannot use the == operator with the names of two
arrays to determine whether the arrays are equal.

• The following code appears to compare the contents of two arrays,
but in reality does not.

int arrayA[] = { 5, 10, 15, 20, 25 };

int arrayB[] = { 5, 10, 15, 20, 25 };

if (arrayA == arrayB) // This is a mistake

cout << "The arrays are the same.\n";

else

cout << "The arrays are not the same.\n";

Comparing Two Arrays

Prepared by : Mohammed Thajeelpage (10)

• To compare the contents of two arrays, you must compare their individual
elements. For example, look at the following code:

const int SIZE = 5;

int arrayA[SIZE] = { 5, 10, 15, 20, 25 };

int arrayB[SIZE] = { 5, 10, 15, 20, 25 };

bool arraysEqual = true; // Flag variable

int count = 0; // Loop counter variable

// Determine whether the elements contain the same data

while (arraysEqual && count < SIZE){

if (arrayA[count] != arrayB[count])

arraysEqual = false;

count++;}

// Display the appropriate message

if (arraysEqual)

cout << "The arrays are equal.\n";

else

cout << "The arrays are not equal.\n";

Comparing Two Arrays cont’d

Prepared by : Mohammed Thajeelpage (11)

Thank you to your attention
and

Any Question

C++برمجة بلغة ال

جامعة الفرات الأوسط التقنية

المعهد التقني كربلاء

قسم تقنيات أنظمة الحاسوب

السنة الاولىلطلبة

أعداد

محمد ثجيل عبدالله. م.م

2022-2021
1

Lecture (17)
Outline

• Introducing Two dimensional Arrays

• Represent Two dimensional Array in C++

• Initialize Two dimensional Array in C++

Introducing Two dimensional Arrays
• Is a data structure consists of a set of elements which

are all of the same type, it characterized by all its
elements are distributed on a set of rows and columns
that represent the size of these array.

• To define a two-dimensional array, two size declarators
are required: The first one is for the number of rows
(1st dimension size) and the second one is for the
number of columns (2st dimension size) .

• Syntax(or general form):

Data_type Array_name[1st dimension size][2st dimension size];

• For processing the information in a two dimensional
array, each element has two subscripts/indexes: one for
its row and another for its column.

Prepared by : Mohammed Thajeelpage (1)

• To create a two dimension array, you use a declaration
statement.

• A two dimension array declaration should indicate four things:

1. The data type of value to be stored in each element.

2. The name of the array.
3. The number of elements in row (1st dimension size) of array.

4. The number of elements in column (2st dimension size) of array.

• This is the general form for declaring a two dimension array:

Datatype Arrayname[1st dimension size][2st dimension size];
Datatype it is could be one of the primitive data structures in c++ like (int, float,
char, ... etc).

Arrayname Any name that is within the terms of naming variables.

1st dimension size which is the number of rows array, must be an integer
constant, such as 10 or a const value.

2st dimension size which is the number of columns array, must be an integer
constant, such as 10 or a const value.

Represent Two dimensional Array in C++

Prepared by : Mohammed Thajeelpage (2)

• Example: int S_M[3][2];

Represent Two dimensional Array in C++ cont’d

Array name

Data type number of
rows array

number of
columns array

10

S_M[0][1]S_M[0][0]0

S_M[1][1]S_M[1][0]1

S_M[2][1]S_M[2][0]2

Columns index

Or const int ROWSSIZE = 3;

const int COLUMNSSIZE = 2;

int S_M[ROWSSIZE][COLUMNSSIZE];

Rows index

Prepared by : Mohammed Thajeelpage (3)

Accessing Array Elements

• The individual elements of a two dimensional array are assigned
unique pair indexes one for row and another for column. These
indexes are used to access the elements.

• Even though an entire array has only one name, the elements
may be accessed and used as individual variables. This is possible
because each element is assigned a two numbers known as a row
index and a column index.

• The following statement stores the integer 30 in
S_M[1][1]. Note that this is the fourth array element.

S_M[1][1] = 30; // S_M[1][1] now holds 30.

Represent Two dimensional Array in C++ cont’d

Array name Element value

Element row index

Element column index

Prepared by : Mohammed Thajeelpage (4)

• Initializing all specified memory locations:
Arrays can be initialized at the time of declaration when their
initial values are known in advance.

Ex: int S_M[3][2]={{60,59},{68,48},{88,78}};

• Partial array initialization:

Partial array initialization is possible in c language. If the
number of values to be initialized is less than the size of the
array, then the elements will be initialized to zero
automatically.

Ex: int S_M[3][2]={{60,59},{68}};

• Initialization without size:
Consider the declaration along with the initialization.

Ex: int S_M[][]={{60,59},{68,48},{88,78}};

Initialize Two dimensional Array in C++

Prepared by : Mohammed Thajeelpage (5)

C++برمجة بلغة ال

جامعة الفرات الأوسط التقنية

المعهد التقني كربلاء

قسم تقنيات أنظمة الحاسوب

السنة الاولىلطلبة

أعداد

محمد ثجيل عبدالله. م.م

2022-2021
1

Lecture (18)
Outline

• Inputting and Displaying Two Dimensional Array
Contents in C++

• Processing Array Contents
• Square Array

Inputting and Displaying Two dimensional Array Contents in C++

// This program stores number of students and for each student
// number of marks in an int array.
// It uses for loop to input the marks for students and another for
// loop to display them.
#include <iostream>
int main() {
const int ROW_SIZE= 10, COLUMN_SIZE= 10;
int S_M[ROW_SIZE][COLUMN_SIZE];
int num_students,num_marks; // number of rows and number of columns

int i,j; // Row index and Column index
// Input the number of rows and number of columns
cout << "Enter the number of students : ";
cin>>num_students;
cout << "Enter the number of marks : ";
cin>>num_marks;

Prepared by : Mohammed Thajeelpage (6)

Inputting and Displaying Two dimensional Array Contents in C++ cont’d

// Input the marks for each students (input array)
for (i = 0; i < num_students; ++i){

cout << “\n Input the marks to the student number “<<i+1;
for (j= 0; j < num_marks; ++j){

cout << “\n Input the mark number “<< j+1 <<“ : “;
cin >> S_M[i] [j];}

}
// Display the marks for each students (display array)
for (i = 0; i < num_students; ++i){

cout << “\n these marks for the student number “<<i<<endl;
for (j= 0; j < num_marks; ++j)

cout<<“ “<<S_M[i] [j];
}

return 0;}

Prepared by : Mohammed Thajeelpage (7)

• Individual a two dimensional array elements are
processed like any other type of variable.

• For example, the following statement calculate the
summation marks for the first student and store it in
variable SUM:

SUM = S_M[0][0]+S_M[0][1]+S_M[0][2] ;

Processing Two dimensional array contents

Prepared by : Mohammed Thajeel

OR

for (j = 0; j <= 2; ++j)

SUM = SUM + S_M[0][j];

page (8)

• When you have square array which mean the number of
rows equal to the number of columns as:

int a[n][n];

Square Array

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

a[3][0] a[3][1] a[3][2] a[3][3]

• a(i,j) is on first diagonal if i = j.
• a(i,j) is on upper triangle of the first diagonal if i < j.

• a(i,j) is on lower triangle of the first diagonal if i > j.

Prepared by : Mohammed Thajeelpage (9)

• When you have square array which mean the number of
rows equal to the number of columns as:

int a[n][n];

Square Array cont’d

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

a[3][0] a[3][1] a[3][2] a[3][3]

• a(i,j) is on second diagonal if i + j=n-1.
• a(i,j) is on lower triangle of the second diagonal if i+j>=n.

• a(i,j) is on upper triangle of the second diagonal if i+j<n-1.

Prepared by : Mohammed Thajeelpage (10)

C++برمجة بلغة ال

جامعة الفرات الأوسط التقنية

المعهد التقني كربلاء

قسم تقنيات أنظمة الحاسوب

السنة الاولىلطلبة

أعداد

محمد ثجيل عبدالله. م.م

2022-2021
1

Lecture (19)
Outline

• Introduction to String

• Input and Display String in C++

•• Useful String Functions and Operators

Introduction to String

• Standard C++ provides a special data type for storing
and working with strings.

• The first step in using the string is to #include the string
header file. This is accomplished with the following
preprocessor directive:

#include <string>

• The next step is to define a string type variable, called a
string object. Defining a string object is similar to
defining a variable of a primitive type.

Syntax(or general form) to declaration string is:

string variable_name;
Prepared by : Mohammed Thajeelpage (1)

• You can use cin with the >> operator to input strings or

use cout with << operator to display strings, after you
use a declaration statement to it. For example the next
program (11-1) read and print student name.

1 #include <iostream>

2 #include <string>

3 int main() {

4 string Stname;

5 cout << "Please enter student name: ";

6 cin >> Stname;

7 cout << "Hello, "<< Stname << endl;

8 return 0;}

Input and Display String in C++

Prepared by : Mohammed Thajeelpage (2)

• With use cin to input string you can not use space in
your string when you have to strings. For example the
next program (11-2)read your name and your city name.

1 #include <iostream>

2 #include <string>

3 int main() {

4 string Name, City;

5 cout << “Enter Your name: "; cin >> Name;

6 cout << “Enter Your City name: "; cin>>City;

7 cout<<"Hello,"<<Name<<“ You live in “<<City<<endl;

8 return 0;}

Input and Display String in C++

Prepared by : Mohammed Thajeelpage (3)

• To solve this problem, C++ provides a special function
called getline. Syntax(or general form) to use getline function is:

getline(cin,string_varible);

• The same program (11-2) it will be:

1 #include <iostream>

2 #include <string>

3 int main() {

4 string Name, City;

5 cout << “Enter Your name: "; getline(cin,Name);

6 cout << “Enter Your City name: "; getline(cin,City);

7 cout<<"Hello,"<<Name<<“ You live in “<<City<<endl;

8 return 0;}

Input and Display String in C++

Prepared by : Mohammed Thajeelpage (4)

• The C++ provides a number of functions, called member
functions, for working with strings. One that is particularly useful
is the length function, which tells you how many characters there
are in a string. Here is an example of how to use it.

string state = "New Jersey";

int size = state.length();

• The C++ also has special operators for working with strings. One
of them is the + operator. when this operator is used with string
operands it concatenates them, or joins them together. Here is an
example of how to use it.

string Fname = “Ali", Sname=“Abd”;

string Fullname = Fname+Sname;

Useful String Functions and Operators

Prepared by : Mohammed Thajeelpage (5)

Prepared by : Mohammed Thajeelpage (2)Lecture (11)

C++برمجة بلغة ال

جامعة الفرات الأوسط التقنية

المعهد التقني كربلاء

قسم تقنيات أنظمة الحاسوب

السنة الاولىلطلبة

أعداد

محمد ثجيل عبدالله. م.م

2022-2021
1

Lecture (20)
Outline

• Breaking Out of a Loop

• Using break in a Nested Loop

•• The continue Statement

Breaking Out of a Loop

• The break statement causes a loop to terminate early.

• Sometimes it’s necessary to stop a loop before it goes
through all its iterations.

• The break statement, which was used with switch
statement, can also be placed inside a loop.

• When it is encountered, the loop stops and the program
jumps to the statement immediately following the loop.

• The while loop in the following program segment
appears to execute 10 times, but the break statement
causes it to stop after the fifth iteration.

Prepared by : Mohammed Thajeelpage (1)

int count = 1;

while (count <= 10){

cout << count << endl;

count++;

if (count == 6)

break;}

Prepared by : Mohammed Thajeelpage (2)

Breaking Out of a Loop

• In a nested loop, the break statement only interrupts the loop it is
placed in.

• The following program segment displays three rows of asterisks
on the screen. The outer loop controls the number of rows and
the inner loop controls the number of asterisks in each row. The
inner loop is designed to display 20 asterisks, but the break
statement stops it during the 11th iteration.

for (int row = 0; row < 3; row++){

for (int star = 0; star < 20; star++){

cout << '*';

if (star == 10) break;}

cout << endl;}

The output of this program segment is:

Using break in a Nested Loop

Prepared by : Mohammed Thajeelpage (3)

• The continue statement causes a loop to stop its current iteration
and begin the next one.

• The continue statement causes the current iteration of a loop to
end immediately. When continue is encountered, all the
statements in the body of the loop that appear after it are
ignored, and the loop prepares for the next iteration.

• The following program segment demonstrates the use of continue
in a while loop:

int testVal = 0;

while (testVal < 10){

testVal++;

if (testVal == 4)

continue; // Terminate this iteration of the loop

cout << testVal << " ";}

The continue Statement

Prepared by : Mohammed Thajeelpage (4)

Here is the output:

1 2 3 5 6 7 8 9 10

	Lecture-1
	Lecture-2
	Lecture-3
	Lecture-4
	Lecture-5
	Lecture-6
	Lecture-7
	Lecture-8
	Lecture-9
	Lecture-10
	Lecture-11
	Lecture-12
	Lecture-13
	Lecture-14
	Lecture-15
	Slide 1: البرمجة بلغة ++C
	Slide 2: Lecture (15)
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Thank you to your attention and Any Question

	Lecture-16
	Slide 1: البرمجة بلغة ++C
	Slide 2: Lecture (16)
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Thank you to your attention and Any Question

	Lecture-17
	Slide 1: البرمجة بلغة ++C
	Slide 2: Lecture (17)
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

	Lecture-18
	Slide 1: البرمجة بلغة ++C
	Slide 2: Lecture (18)
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

	Lecture-19
	Slide 1: البرمجة بلغة ++C
	Slide 2: Lecture (19)
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

	Lecture-20
	Slide 1: البرمجة بلغة ++C
	Slide 2: Lecture (20)
	Slide 3
	Slide 4
	Slide 5
	Slide 6

