
Ministry of Higher Education & Scientific Research
Al-Furat Al-Awsat Technical University

Karbala Technical Institute
Department of Computer System Techniques.

Data Structures
Second Stage

Assist. Prof. Dr. Wathiq Laftah Al-Yaseen

2022-2023

 Definition of Data Structures

Data Structures (1) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

In this lesson we will learn …

- Definition of data structures.

- Basic concept of data structures.

- Data structure types.

- Select of a particular data structure.

2

3

Data Structures (1) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Data Structure

Data structure is the structural representation of logical
relationships between elements of data. In other words a
data structure is a way of organizing data items by
considering its relationship to each other.

Data structure mainly specifies the structured organization
of data, by providing accessing methods with correct degree
of associativity. Data structure affects the design of both the
structural and functional aspects of a program.

Algorithm + Data structure = Program

4

Data Structures (1) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Basic Concepts of Data Structures

• Data: Is the fact that we can see and deal with in our daily
life like; book, car, 1245, ….etc.

• Information: Is a collection of words, numbers, dates, or
communicated material that have meaning.

Data Information
Processing

5

Data Structures (1) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

• Type: is a collection of values. For example, the Boolean
type consists of the values True and False. The integers
also form a type. An integer is a simple type because its
values contain no subparts. A bank account record will
typically contain several pieces of information such as
name, address, account number, and account balance.
Such a record is an example of an composite type.

• Data item: is a piece of information or a record whose value
is drawn from a type. For example, the value True is a data
item from the Boolean type.

6

Data Structures (1) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

• Data type: is a type together with a collection of operations
to manipulate the type. A data type consists of two parts, a
set of data items and fundamental operations on this set.
We can see that the integer type consists of values (whole
numbers in some defined range) and operations (addition,
subtraction, multiplication and division, etc.).

• Abstract data type (ADT): is the realization of a data type
as a software component.

7

Data Structures (1) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Data Type

Logical Form
ADT

▪ Type
▪ Operations

Physical Form
Data Structure

▪ Storage space
▪ Subroutines

This figure illustrate the relationship between ADT and data
structures. The ADT defines the logical form of the data type. The
data structure implements the physical form of the data type.

8

Data Structures (1) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

The selection of a particular data structure will help the
programmer to design more efficient programs that will be
used to solve complexity problems.

The programmers have to strive hard to solve these problems.
If the problem is analyzed and divided into sub problems, the
task will be much easier.

The simplest and most straightforward way of solving a
problem may not be sometimes the best one. Moreover, there
may be more than one program to solve a problem.

Problems and Programs

9

Data Structures (1) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

To choice of a particular program depends on following
performance analysis and measurements.

Analysis of Programs

The amount of memory that program needs to run
completion. The space needed by program consist of:

1. Instruction space.

2. Data space.

Fixed space.

• Constant and simple variables.

• Fixed size structural variables, like array and structures.

Fixed space.

• Dynamically space. Such as strings.

10

Data Structures (1) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Analysis of Programs

3. Environment stack space.

Needed to store the information to resume the suspended
functions. The information that be saved are:

• Return address of the called functions.

• Values of all the parameters which are send and return
between functions and called points.

11

Data Structures (1) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Analysis of Programs

The amount of time that program needs to run completion.

The exact time will depend on the implementation of the
algorithm, programming language, optimizing the
capabilities of the compiler used, the CPU speed, other
hardware characteristics/specifications and so on.

12

Data Structures (1) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Data Structure Types

Programming languages support defined and use data items
by providing formulas to single-value items such as (integer,
real, character, and boolean) and the multi-value items need to
different data structures like (array, record, ..., etc.).

C++ supports the following data types:

13

Data Structures (1) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Data Structure Types

- Integer type.
(int, short, long)

- Floating point type.
(float, double, long
double)

- Char.
- Boolean.
- Pointers.

- Graph.
- Tree.

- Array.
- Stack.
- Queue.

- Simple LL.
- Double LL.
- Circular LL.

14

Data Structures (1) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Selection of Data Structure

Before any data can be stored in memory, you must tell the
computer how much space to reserve for data by using an
abstract data type.

Memory is reserved by using a data type in a declaration
statement. The form of a declaration statement varies
depending on the programming language you use. Here is a
declaration statement for C++:

15

Data Structures (1) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Selection of Data Structure

We need to choose the suitable abstract data type for data that
we want stored in memory, then use the abstract data type in
a declaration statement to declare a variable. A variable is a
reference to the memory location that we reserved using the
declaration statement.

For Example:

int X; …

100

105

110

…

Memory

Byte

4 bytes reserved to X variable.
The address of this location is
saved in X.

16

Data Structures (1) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Data Type Size (Byte) Range of Values Group

Byte 1 –128 to 127 Integers

short 2 –32,768 to 32,767 Integers

int 4 –2,147,483,648 to 2,147,483,647 Integers

long 8 –9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

Integers

char 2 65,536 (Unicode) Characters

float 4 3.4e-038 to 3.4e+038 Floating-point

double 8 1.7e-308 to 1.7e+308 Floating-point

boolean 1 0 or 1 Boolean

Types of primitive data types

Ministry of Higher Education & Scientific Research
Al-Furat Al-Awsat Technical University

Karbala Technical Institute
Department of Computer System Techniques.

Data Structures
Second Stage

Assist. Prof. Dr. Wathiq Laftah Al-Yaseen

2022-2023

Primitive Data Structures Representation

In this lesson we will learn …

Primitive Data Structures Representation

o Integer numbers

o Floating point numbers

o Characters and Strings

o Pointers

o Logical Data

2

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

3

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Abstract data types are divided into two categories, primitive
data types and user-defined data types. A primitive data type
is defined by the programming language, such as the data
types we learned in lesson (1), int, float, etc. Some
programmers call these built-in data types.

Introduction to Primitive data structures

There are four data type groups:
o Integer stores whole numbers and signed numbers; age,

temperature, etc.
o Floating-point stores real numbers (fractional values);

average, deposit, etc.
o Character stores a character; names, address, etc.
o Boolean stores a true or false value; sex, .

4

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Integer representation

The integer abstract data type group consists of four abstract
data types used to reserve memory to store whole numbers:
byte , short , int , and long.

Depending on the nature of the data, sometimes an integer
must be stored using a positive or negative sign, such as a +10
or –5. Other times an integer is assumed to be positive so
there isn’t any need to use a positive sign. An integer that is
stored with a sign is called a signed number; an integer that
isn’t stored with a sign is called an unsigned number.

5

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Positive Integer or Zero

It will be represented in binary as a natural number, except
that the most significant bit (the bit on the far left) represents
the plus or minus sign. So for a positive integer or zero, this bit
must be set to 0 (which corresponds to a plus sign, as 1 is a
minus sign). Thus, if a natural number is encoded using 4 bits,
the largest number possible will be 0111 (or 7 in decimal).

Generally, the largest positive integer encoded using n bits
will be 2n-1-1.

6

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Negative Integer

There are two methods to represent and encoding the negative
integer numbers.

7

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Sign-Magnitude

The Most Significant Bit is used to represent the sign. ‘1’ is
used for ‘-’ (negative sign), and ‘0’ is used for ‘+’ (positive
sign).

The format of a Sign-Magnitude number in 8-bits is:

We can notice, the sign of number need for 1 bit, while the
value of number need to 7 bits.

Position 7 6 5 4 3 2 1 0

Bits MSB LSB

Sign Magnitude

8

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Sign-Magnitude

In order to represent the negative integer number by Sign-
Magnitude method, we need to apply the following steps.

1. Take absolute value of number (Its positive equivalent).

2. Convert number to binary (Represent using n-1 bits).

3. Flip the most significant bit to 1.

9

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Sign-Magnitude

Example (1): Express the integer number (-7) by using sign-
magnitude representation with 4-bits.

1. Take the absolute of number.
|-7| = 7

2. Represent the resulted number in binary.
(7)10 (0111)2

3. Flip the MSB to 1.
(0111)2 (1111)2

10

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Sign-Magnitude

Example (2): Express the integer number (-9) by using sign-
magnitude representation with 8-bits.

1. Take the absolute of number.
|-9| = 9

2. Represent the resulted number in binary.
(9)10 (00001001)2

3. Flip the MSB to 1.
(00001001)2 (10001001)2

11

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Sign-Magnitude

Disadvantage:

1. Need additional bit for sign.
2. Not convenient for arithmetic.

In decimal
(-4)10 + (1)10 = (-3)10

In Sign-Magnitude
(1100)2 + (0001)2 = (1101)2 = (-5)10 (-3)10

3. They are two representations of zero.
(00000000)2 = (+ 0)10

(10000000)2 = (- 0)10

12

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Two’s Complement (2’s Complement)

The principle of two’s complement are:

Choose a negative number.

4. Add one.

1. Take its absolute value (its positive equivalent).

2. It is represented in binary (base 2) using n-1 bits.

3. Each bit is switched with its complement (i.e. the zeroes
are all replaced by ones and vice versa).

13

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Two’s Complement (2’s Complement)

Example (3): Express the integer number (-4) by using 2’s
complement representation with 4-bits.

1. Take its absolute value.
|-4| = 4

2. It is represented in binary.
(4)10 (0100)2

3. Switched each bit with its complement.
(0100)2 (1011)2

4. Add 1.
(1011)2 + (0001)2 = (1100)2

14

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Example (4): Evaluate the operation (3+4) , (3-4) and (-3+4) in
2’s complement with using 4-bits.

Two’s Complement (2’s Complement)

3+4 = (0011)2 + (0100)2 = (0111)2 = 7

3-4 = (0011)2 - (0100)2 = (0011)2 + [2’s complement of (-4)]
= (0011)2 + (1100)2 = (1111)2 = -1

-3+4 = [2’s complement of (-3)] + (0100)2 = (1101)2 + (0100)2

= (0001)2 = 1

15

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Two’s Complement (2’s Complement)

Advantages:

1. Only has one value for zero.

2. Convenient for arithmetic.

16

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Summary of integer representation using 4-bits
2’s ComplementSign-MagnitudeUnsignedContent of Memory

+0+000000

+1+110001

+2+220010

+3+330011

+4+440100

+5+550101

+6+660110

+7+770111

-8-081000

-7-191001

-6-2101010

-5-3111011

-4-4121100

-3-5131101

-2-6141110

-1-7151111

17

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Real Representation

Computers which work with real arithmetic use a system
called floating point. Floating point describes a system for
representing real numbers which supports a wide range of
values.

The term “floating point” refers to the fact that the decimal
point can be placed anywhere relative to the significant
digits of the number.
The most commonly encountered representation is that
defined by the IEEE 754 Standard (Institute for Electrical
and Electronics Engineers).

18

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Real Representation

The structure of floating point (float in C++) that uses 32 bits
(4 bytes) as follows:

1 bit 8 bits 23 bits

Sign Magnitude Fraction

The goal is to represent a real number with a decimal point
in binary by using a normalization method with form
1.XXX… 2exponent.

For example, 101.01, which is not read one hundred one point
zero one because it is in fact a binary number, i.e. 5.25 in
decimal)

19

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Real Representation

IEEE standard 754 offers a way to encoding a number using 32
bits, and defines three components:

▪ The positive/negative sign is represented by one bit, the
most significant bit (furthest to the left).

▪ The exponent is encoded using 8 bits immediately after
the sign.

▪ The mantissa (the bits after the decimal point) with the
remaining 23 bits.

Thus, the encoding of real number follows the form:
s-eeeeeeee-mmmmmmmmmmmmmmmmmmmmmmm
Where s: sign; e: exponent; m: mantissa

20

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Decimal floating point to IEEE standard representation

1. Compute the binary equivalent of the integer part and the
fractional part.

2. Normalize the number by moving the decimal point to the
right of the leftmost one, in order to get the form:

1.XXX…. 2exponent

Mantissa

3. Add 127 to the exponent in order to convert the decimal
into a real number in binary.

4. Store the results from 1 to 3 as follows:

Sign Exponent (from step 3) Mantissa (from step 2)

21

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Real Representation

Example (5): Find the IEEE representation of (4.25)10 using 32
bit.

1. The binary equivalent of (4.25)10 is (100.01)2.

0.25 2 = 0.5
0.5 2 = 1.0
 (0.25)10 = (01)2

2. Normalize the (100.01)2 to [(1.0001)2 22].

(100.01)2 (1.0001)2 22 No. of shifting = Exponent

Mantissa

8 bits

22

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Real Representation

3. Add 127 to exponent with convert to binary.

Exponent + 127 = 2+127 = (129)10 (10000001)2

4. Store the results.

Sign Exponent Mantissa

23 bits

This results will be saved in memory in Hexadecimal as:
(40 88 00 00)16

23

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Real Representation

Example (6): Find the IEEE representation of (-24.75)10 using
32 bit.

1. The binary equivalent of (24.75)10 is (11000.11)2.

2. Normalize the (11000.11)2 to [(1.100011)2 24].

3. Add 127 to 4; 127+4 = (131)10 (10000011)2

4. Store the results.

1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Exponent Mantissa

Sign

Website link: IEEE 754 Converter
https://www.h-schmidt.net/FloatConverter/IEEE754.html

Saved in memory in Hexadecimal as (C1 C6 00 00)16

24

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Characters Representation

A character abstract data type is represented as an integer value
that corresponds to a character set. A character set assigns an
integer value to each character, punctuation, and symbol used
in a language.

For example, the letter A is stored in memory as the value 65,
which corresponds to the letter A in a character set. The
computer knows to treat the value 65 as the letter A rather than
the number 65 because memory was reserved using the char
abstract data type.

25

Data Structures (2) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Characters Representation

There are two character sets used in programming, the
American Standard Code for Information Interchange
(ASCII) and Unicode.

ASCII is the oldest character sets and uses one byte to
represent a maximum of 256 characters. However, a serious
problem was evident after years of using ASCII. Many
languages such as Russian, Arabic, Japanese, and Chinese
have more than 256 characters in their language.

A new character set called Unicode was developed to resolve
this problem. Unicode uses two bytes to represent each
character.

Ministry of Higher Education & Scientific Research
Al-Furat Al-Awsat Technical University

Karbala Technical Institute
Department of Computer System Techniques.

Data Structures
Second Stage

Assist. Prof. Dr. Wathiq Laftah Al-Yaseen

2022-2023

Arrays

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

In this lesson we will learn …

Compound Data Structures

- Arrays.

- One-Dimension Array.

- Two-Dimension Array.

- Represent of Array by Rows method.

- Represent of Array by Columns method.

2

3

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Arrays

An array is a compound data structures that can hold several
values, all of one data type.

An array is a fixed size sequential collection of elements of
identical types.

The declaration statement in C++ is:

Data_Type name_of_array[];

The elements in a one dimensional array are indexed by the
integers (0 to n-1), where n is the size of array.

4

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Arrays

The amount of memory that be used by one dimensional
array depends on the array’s data type and the number of
elements (size of array).

Total array's size in memory = data type size number of elements

For example,

short age[6];

The age array, defined here, is a one dimensional array that
holds six short integer values.

A short integer in C++ uses 2 Bytes of memory, so the age
array would reserve 12 Bytes.

5

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Represent one dimensional array in memory

The main memory of a computer can be thought as a huge
one dimensional array of memory locations.

Each basic memory location consumes 1 Byte, e.g. the 1KB of
main memory can be thought as an array with 1,024 elements,
each element = 1 Byte.

In C/C++, a one dimensional array is a continuous block of
memory. In our example, int hours[6]; it will be represented
in memory as:

6

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Represent one dimensional array in memory

0012FF10

0012FF20

0012FF30

0012FF40

0012FF50

0012FF60

0012FF70

Memory
Address

Byte

hours[0] hours[3]
hours[1] hours[4]
hours[2] hours[5]

Starting
address of

hours array

The starting address of hours
array in Hexadecimal is: 0012FF20
What is the address memory of
the second element?

7

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Represent one dimensional array in memory

Example (1): Assume B is one dimensional array declared as
integer array, and the starting address is (800). Find the
address of the element B(3).

In general, if we given starting address (A) of one dimensional
array of type (T), we can find the k‐th element at address:

Element address(k) = A + k Size of (T)

A = 800; k = 3; Size of (T) = Size of (int) = 4 Byte;

Element address(3) = A + k Size of (T)
= 800 + 3 4 = 80C

8

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Represent one dimensional array in C++

Example (2):
int hours[6];

or const int SIZE = 6;
int hours[SIZE];

-The type of array is integer.
-The name of this array is hours.
-The number inside the brackets is the array’s size.

Index 0 1 2 3 4 5

Value 3 15 75 1 8 12
hours

hours[0]; 1st element
hours[1]; 2nd element
hours[5]; 5th element

9

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Represent one dimensional array in C++

The individual elements of one dimensional array are assigned
unique indices. These indices are used to access the elements.

The following statement stores the integer value 50 in
hours[3]. Note that, this is the fourth element of array that has
index 3.

hours[3] = 50; // hours[3] now hold 50.

Array’s name Index Element value

10

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Represent one dimensional array in C++

Can we imagine how long we have to write the declaration
part by using default variable declaration?

Why need to use array type?

Consider the following issue:
“We have a list of 1000 students' marks of an integer type”

We will declare something like the following:
int studMark0, studMark1, studMark2, ..., studMark999;

By using an array, we just declare like this:
int studMark[1000];

11

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Initialize one dimensional array in C++

Arrays can be initialized at the time of declaration when their
initial values are known in advance.

For example;
int hours[6]={10,5,2,6,14,1};

If the number of values to be initialized is less than the size of
the array, then the elements will be initialized to zero
automatically.

For example;
int hours[6]={10,5,2};

Consider the declaration along with the initialization.

For example; char b[]={'C','O','M','P','U'};

12

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

One Dimensional Array in C++

// This program stores employee work hours in an int array.
// It uses one for loop to input the hours and another for loop to display them.

#include <iostream.h>
int main() {

const int NUM_EMPLOYEES = 6;
int hours[NUM_EMPLOYEES]; // Holds hours worked for 6 employees
cout << "Enter the hours worked by " << NUM_EMPLOYEES << " employees:";
for (int count = 0; count < NUM_EMPLOYEES; count++)

cin >> hours[count];

cout << "The hours we entered are:";
for (int count = 0; count < NUM_EMPLOYEES; count++)

cout << " " << hours[count];
cout << endl;
return 0;

}

13

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Processing one dimensional array contents

Individual element of one dimensional array is processed like
any other type of variable.

For example, the following statement multiplies hours[3] by the
variable rate:

pay = hours[3] * rate;

Moreover, the following are examples of pre-increment and
post-increment operations on array elements:

int score[5] = {7, 8, 9, 10, 11};
++score[2]; // Pre-increment operation on the value in score[2]
score[4]++; // Post-increment operation on the value in score[4]

14

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Copy one array to another

Cannot simply assign one array to another array. To copy the
contents of one array to another, we must assign each element
of the first array, one at a time, to the corresponding element of
the second array. The following code segment uses a for loop to
do this.

const int SIZE = 6;
int arrayA[SIZE] = {10, 20, 30, 40, 50, 60};
int arrayB[SIZE] = { 2, 4, 6, 8, 10, 12};
for (int index = 0; index < SIZE; index++)

arrayA[index] = arrayB[index];

15

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Comparing two arrays

As we cannot copy one array to another with a single statement,
we also cannot compare the contents of two arrays with a single
statement.

That is, we cannot use the == operator with the names of two
arrays to determine whether the arrays are equal.

To compare the contents of two arrays, we must compare their
individual elements. For example, look at the following code:

16

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Comparing Two Arrays

const int SIZE = 5;
int arrayA[SIZE] = {5, 10, 15, 20, 25};
int arrayB[SIZE] = {5, 10, 15, 20, 25};
bool arraysEqual = true;
int count = 0;
while ((count < SIZE) && (arrayA[count] == arrayB[count])){

count++;
}
if (count >= SIZE)

cout << "The arrays are equal.\n";
else

cout << "The arrays are not equal.\n";

17 Two Dimensional Array

To define a two dimensional array, two size declarators are
required: The first one is for the number of rows (1st

dimension) and the second one is for the number of columns
(2st dimension).

The general form is:

Data_Type name_of_array[][];

For processing data in a two dimensional array, each
element has two indexes: one for its row and another for its
column.

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

18 Represent two dimensional array in memory

The amount of memory that be used by a two dimensional
array is based on the array’s data type and the number of
elements (no of rows × no of columns).

Example: The stdMarks array, is a 2-dim array that holds four
students (4 rows) and three marks for each student (3
columns), which mean it is holds (4 × 3) 12 integer values:

int stdMarks[4][3];

Size of array in memory = data type size × no of element

On a typical PC, a integer uses 4 Bytes of memory, so the
stdMarks array would occupy (12 × 4) 48 Bytes.

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

19

The main memory of a computer can be thought as a huge one
dimensional array. Each basic memory location consumes 1
byte. E.g. the 1KB of main memory can be thought as an array
with 1,024 elements, each element = 1 byte.

Represent two dimensional array in memory

In C/C++, a two dimensional array is a continuous block of
memory. In our example, int stdMarks[4][3] it will be
represented in memory as:

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

20

0012FF10

0012FF20

0012FF30

0012FF40

0012FF50

0012FF60

0012FF70

Memory
Address

Byte

Starting
address of
stdMarks

array

Represent two dimensional array in memory

stdMarks[0][0] stdMarks[0][1] stdMarks[0][2] stdMarks[1][0]

stdMarks[1][1] stdMarks[1][2] stdMarks[2][0] stdMarks[2][1]

stdMarks[2][2]

Size of the arraySize of each elementNum. of elementsArray declaration

(12×2)=24 Bytes2 Byte(3×4)=12char A[3][4];

100 Bytes2 Byte50short int B[10][5];

160 Bytes4 Byte40int marks[4][10];

100 Bytes4 Byte25float temp[5][5];

Example
Array Size

Declarators

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

21 Represent two dimensional array in memory

The store of two dimensional array in memory can be
represented in either of two methods:

1. Row-major order: Elements travel across rows, then across
columns, Ex: int hours[4][4];

2 4 8 10

1 3 5 7

12 14 16 18

9 11 13 15

Row 0

Row 1

Row 2

Row 3

Logically it is viewed as a two-dimensional
collection of data, but in physically it is
stored as a one dimensional array memory.

151311918161412753110842

Row 0 Row 1 Row 2 Row 3

Memory

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

22 Represent two dimensional array in memory

In general, if we have a starting address (A) of two
dimensional array (R×C) of data type (T), we can find the
V[i][j] element at address:

Example: Assume C is array declared as char C[2][3]; and the
starting address is (100)16. Find the address of the element C(1,2)?
- Starting address (A) = (100)16

- Row's index of element(i)= 1
- Column’s index of element(j)= 2
- Number of elements in a column (C)= 3
- Size(T) = size (char) = 2 Byte

Address(C[1][2]) = 100 + 1 * 3 * 2 + 2 * 2 = (10A)16

Address(V[i][j]) = A + i * (no of elements column (C)) * size(T) + j * size(T)

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

23 Represent two dimensional array in memory

Logically it is viewed as a
two dimensional.

C(0,0) C(0,1) C(0,2)

C(1,0) C(1,1) C(1,2)

Row 0

Row 1

Col 0 Col 1 Col 2

Physically it is stored as a
one dimensional.

C(1,2)C(1,1)C(1,0)C(0,2)C(0,1)C(0,0)
00000100 00000102 00000104 00000106 00000108 0000010A

Row 0 Row 1

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

24 Represent two dimensional array in memory

2. Column-major order: Elements travel across columns, then
across rows, Ex: int hours[4][4];

2 4 8 10

1 3 5 7

12 14 16 18

9 11 13 15

Col 0 Col 1 Col 2 Col 3

Logically it is viewed as a
two-dimensional collection
of data, but in physically it is
stored as a one dimensional
array memory.

151871013165811143491212

Memory

Col 0 Col 1 Col 2 Col 3

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

25

In general, if we have a starting address (A) of two
dimensional array (R×C) of data type (T), we can find the
V[i][j] element at address:

Represent two dimensional array in memory

Address(V[i][j]) = A + j * (no of elements row (R)) * size(T) + i * size(T)

Example: Assume C is array declared as char C[2][3]; and the
starting address is (100)16. Find the address of the element C(0,2)?
- Starting address (A) = (100)16

- Row's index of element(i)= 0
- Column’s index of element(j)= 2
- Number of elements in a row (R)= 2
- Size(T) = size (char) = 2 Byte

Address(C[0][2]) = 100 + 2 * 2 * 2 + 0 * 2 = (108)16

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

26 Represent two dimensional array in memory

Logically it is viewed as a
two dimensional.

C(0,0) C(0,1) C(0,2)

C(1,0) C(1,1) C(1,2)

Row 0

Row 1

Col 0 Col 1 Col 2

Physically it is stored as a
one dimensional.

C(1,2)C(0,2)C(1,1)C(0,1)C(1,0)C(0,0)
00000100 00000102 00000104 00000106 00000108 0000010A

Col 0 Col 1 Col 2

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

27 Represent two dimensional array in C++

To create a two dimension array, we use a declaration
statement in page 17 of this slides.
A two dimension array declaration should indicate four
things:
1. The data type of value that be stored in each element.
2. The name of the array.
3. The number of elements in row (1st dim size) of array.
4. The number of elements in column (2st dim size) of array.

Example:

data type array name no. of rows no. of cols

int employ [2];[3]

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

28 Represent two dimensional array in C++

• The individual elements of a two dimensional array are
assigned unique pair indexes one for row and another for
column. These indexes are used to access the elements.

• Even though an entire array has only one name, the
elements may be accessed and used as individual
variables.

The following statement stores the integer 30 in
employ[1][1]. Note that this is the fourth array element.

; // employ[1][1] now holds 30.

array name

employ[1][1] = 30

row index col index value

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

29 Initialize two dimensional array in C++

• Initializing all locations of array
Array can be initialized at the time of declaration when their
initial values are known in advance.

int employ[3][2]={{60,59},{68,48},{88,78}};

• Partial array initialization
If the number of values to be initialized is less than the size
of the array, then the elements will be initialized to zero
automatically.

int employ[3][2]={{60,59},{68}};

Exercise: Try initialize array:
int employ[3][2]={60,59,68,48,88,78};

What did you find out?

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

30 Read and write two dimensional array in C++

Write a C++ program to input m of marks to n students.

#include <iostream>

int main(){
const int ROW_SIZE = 10, COLUMN_SIZE = 10;
int stdMarks[ROW_SIZE][COLUMN_SIZE];
int num_students, num_marks;
cout << "Enter the number of students : ";
cin >> num_students;
cout << "Enter the number of marks : ";
cin >> num_marks;

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

31

for (int i = 0; i < num_students; i++){
cout << “Input the marks to the student (“ << i+1 << “)\n”;
for (int j = 0; j < num_marks; j++){

cout << “Input the mark “ << j+1 <<“ : “;
cin >> stdMarks[i][j];

}
}
for (int i = 0; i < num_students; i++){

cout << “These marks for the student number (“ << i << “)”;
for (int j = 0; j < num_marks; j++)

cout << “ “ << stdMarks[i][j];
}
return 0;

}

Read and write two dimensional array in C++

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

32

➢ If we have a square two dimensional array, write a C++
program to output the main and secondary diagonal.

➢ Exchange the main diagonal of square array with
secondary diagonal.

➢ Write a C++ program to multiple two dimensional array.
➢ Write a C++ program to compare between two

dimensional array.
➢ Write a C++ program to find the min and max value in

two dimensional array.
➢ Write a program in C++ to output the unique values of

array.
➢ Write a program in C++ to sort one dimensional array.

Questions

Data Structures (3) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Ministry of Higher Education & Scientific Research
Al-Furat Al-Awsat Technical University

Karbala Technical Institute
Department of Computer System Techniques.

Data Structures
Second Stage

Assist. Prof. Dr. Wathiq Laftah Al-Yaseen

2022-2023

Records

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

In this lesson we will learn …

- Introducing record.
- Represent Record in C++.
- Initialization of Record in C++.

- Inputting and Displaying Record in C++.

- Processing Record contents in C++.

- Copying Record to Another.

- Array of Records in C++.

- Array within Record in C++.

- Nested Record in C++.

2

3

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Introducing record

A record is an integrated set of information about a single item
(such as person, place, etc.) and the fields defined the
individual components of the record.
In some situations, we need to group elements of different
types in order to represent one item. For example, a set of
fields might be a person’s (name, age, address, and phone
number). Together, all those fields respect to one person make
up a record.

07801234567Karbala20Ahmed Ali

name age address phone number

string int string long
Record

Different types

4

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Represent record in C++

• record called a struct (structure).

• fields called members.

• The declaration of structure must start with the
keyword struct followed by the structure’s name, then
structure’s member variables are declared within braces.

• General form for declaring structure in C++:

struct structName {

dataType1 memberName1;

dataType2 memberName2;

};

…

5

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Represent record in C++
Example:

struct studentRec{
char firstName[10], lastName[10];
int Age;
float Average;

};

After declared studentRec as a structure we can use it as any
type to define variables:

studentRec student;

6

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Represent record in C++

The individual member of the record must be accessed by the
name of the record followed by the dot operator (.) and then
the name of the member.

cin >> student. firstName;
cin >> student. lastName;
student.Age = 18;

7

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Initialization of record in C++

• Like normal variables, structures can be initialized at the
time of declaration.

• Initialization of structure is almost similar to initializing
array as:

struct Employee {
int Id;
char Name[25];
int Age;
long Salary;

};

Employee emp = {2, “Haider”, 35, 35000};

8

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Inputting and displaying record in C++

• Data in a structure variable must be read one member at a
time.

• Contents of a structure must be written one member at a time.

Example: This program reads personal information and print it?

#include <iostream>

#include <conio>
int main(){

struct personRec{
char lastName[10];
char firstName[10];
int age;

};

9

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Inputting and displaying record in C++

personRec person;

cout << “Enter first name: “; cin >> person.firstName;

cout << “Enter last name: “; cin >> person.lastName;

cout << “Enter age: “; cin >> person.age;

cout << “\n\n Hello “ << person.firstName << “ “;

cout << person.lastName << “. How are you?\n”;

cout << "\n Congratulations on reaching the age of “ << person.age;

}

10

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Processing record contents in C++

• Individual a record elements (members) are processed like
any other type of variables. For example, when you have the
following structure:

struct studentRec{
float av;
int mark1, mark2, mark3;

};
studentRec student1, student2;
student1.mark1 = 50;
student1.mark2 = 60;
student1.mark3 = 70;

• The following statement calculate the average of student1
and store it in av member.

student1.av = (student1.mark1+student1.mark2+student1.mark3)/3;

11

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Copying record to another

• To copy the contents of one record to another, you can use
assignment statement, the following example use the records
student1 and student2 as them were declared in previous
slide:

student2 = student1;
cout << student2.mark1;
cout << student2.mark2;
cout << student2.mark3;
cout << student2.av;

• When you run this code segment all printed values it will be
the same values that relate to the Student1.

12

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Array of records in C++

At first, we need to declare a structure such as:
struct studentRec{

char firstName[10], lastName[10];
int Age;
float Average;

};

Then specify an array of that type:
studentRec studentArray[10];

Access elements of the array that has structure elements:

for (int i = 0; i < 10; i++)
cin >> studentArray[i].firstName;

13

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Array of records in C++

Example: Write a program in C++ to read information for
group of students, each student has name, average, and class,
therefore, this program will calculate the number of students
which are success with print their information?

#include <iostream>
#include <conio>
int main() {

struct studentRec {
char stdName[10];
float avg;
int class;

};

14

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Array of records in C++

const int Size = 20;
studentRec arrStudent[Size];
int numSuccess = 0, n;
cout << “Enter Number Students: “;
cin >> n;
for (int i = 0; i < n; i++){

cout << “\n Enter student name: “;
cin >> arrStudent[i].stdName;
cout << “Enter student average: “;
cin >> arrStudent[i].avg;
cout << “Enter student class: “;
cin >> arrStudent[i].class;

}
cout << “\n The information of success students”;

15

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Array of records in C++

for (int i = 0; i < n; i++)
if (arrStudent[i].avg > 49){

numSuccess = numSuccess + 1;
cout << “Student name: “<< arrStudent[i].stdName << endl;
cout << “Student average: “ << arrStudent[i].avg << endl;
cout << “Student class: “ << arrStudent[i].class << endl;

}
cout << “\n The number success students is : “ << numSuccess;

}

16

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Array within record in C++

• As we know, record is collection of different data type.
Like normal data type, it can also define an array as well.

• The general form for array within structure is:

struct structName {

dataType1 memberName1; // normal variable

dataType2 arrayName[size]; // array variable

};

…

17

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Array within record in C++

Example: Write a program in C++ to read one student
information has (Number, Name, 3 marks), then find and
print his total marks with average?

#include <iostream>
void main() {

struct Student {
int Num;
char Name[25];
int Marks[3]; // array of marks
int Total;
float Avg;

};

18

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Array within record in C++

Student S;
cout << “Enter Student Number: “;
cin >> S.Num;
cout << “Enter Student Name: “;
cin >> S.Name;
S.Total = 0;
for (int i = 0; i < 3; i++){

cout << Enter Marks " << i+1 << “: “;
cin >> S.Marks[i];
S.Total = S.Total + S.Marks[i];

}
S.Avg = S.Total /3;
cout << “Total: “ << S.Total << endl;
cout << “Average: “ << S.Avg;

}

19

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Nested record in C++
• When a structure contains another structure, it is called

nested structure.

• Syntax for structure within structure or nested structure is
struct structName1 {

dataType1 memberName1;
dataType2 memberName2;

}
struct structName2 {

dataType1 memberName1;
structName1 memberName2;

};

…
…

20

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Nested record in C++

For example, we have two structures named Address and
Employee. To make Address nested to Employee, we have to
define Address structure before and outside Employee
structure and create an object of Address structure inside
Employee structure.

struct Address {

char HouseNo[25], City[25], PinCode[25];

};

struct Employee{

int Id; char Name[25]; float Salary;

Address Add;

};

21

Data Structures (4) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Nested record in C++

Here example shows how we can access the member in nested
structure, by using the structures that previously declared
(Address and Employee).

cin >> Employee.Id;

cin >> Employee.Name;

cin >> Employee.Salary;

cin >> Employee.Add.HouseNo;

cin >> Employee.Add.City;

cin >> Employee.Add.PinCode;

Ministry of Higher Education & Scientific Research
Al-Furat Al-Awsat Technical University

Karbala Technical Institute
Department of Computer System Techniques.

Data Structures
Second Stage

Functions & Subroutines

Assist. Prof. Dr. Wathiq Laftah Al-Yaseen

2022-2023

In this lesson we will learn …

- Functions.

- Subroutines.

- Arguments passed by value and by reference.

2

Data Structures – Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen
Functions & Subroutines

3

Data Structures – Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen
Functions & Subroutines

Functions allow to structure programs in segments of code to perform
individual tasks.

In C++, a function is a group of statements that is given a name, and
which can be called from some point of the program. The most common
syntax to define a function is:

type name (parameter1, parameter2, ...) {
statements

}

Where:

- type is the type of the value returned by the function.

- name is the identifier by which the function can be called.

Functions

4

- parameters (as many as needed): Each parameter consists of a type

followed by an identifier, with each parameter being separated from

the next by a comma. Each parameter looks very much like a regular

variable declaration (for example: int x), and in fact acts within the

function as a regular variable which is local to the function. The

purpose of parameters is to allow passing arguments to the function

from the location where it is called from.

- statements is the function's body. It is a block of statements

surrounded by braces { } that specify what the function actually does.

Functions

Data Structures – Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen
Functions & Subroutines

5

Let's have a look at an example:

#include <iostream>
using namespace std;
int addition (int a, int b) {

int r;
r=a+b;
return r;

}

int main () {
int z;
z = addition (5,3);
cout << "The result is " << z;

}

Functions

Data Structures – Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen
Functions & Subroutines

6

A function can actually be called multiple times within a program, and
its argument is naturally not limited just to literals:

#include <iostream>
using namespace std;
int subtraction (int a, int b) {

int r;
r=a-b;
return r;

}
int main () {

int x=5, y=3, z;
z = subtraction (7,2); cout << "The first result is " << z << '\n’;
cout << "The second result is " << subtraction (7,2) << '\n’;
cout << "The third result is " << subtraction (x,y) << '\n’;
z= 4 + subtraction (x,y);
cout << "The fourth result is " << z << '\n’;

}

1

2

3

4

Functions

Here in this example:
Call subtraction
function 4 times.

Data Structures – Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen
Functions & Subroutines

7 Subroutines

Data Structures – Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen
Functions & Subroutines

The syntax shown above for functions:

type name (argument1, argument2 ...) {
statements

}

Requires the declaration to begin with a type. This is the type of the
value returned by the function. But what if the function does not need
to return a value? In this case, the type to be used is void and is called
subroutine. So the general syntax of subroutine is:

void name (argument1, argument2, …){
statements;

}

8 Subroutines

Data Structures – Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen
Functions & Subroutines

#include <iostream>
using namespace std;

void printmessage (string txt) {
cout << txt;

}

int main () {
printmessage (“Hello World”);

}

For example, a subroutine that simply prints a message may not need
to return any value:

Cannot see
return statement !

9 Arguments passed by value and by reference

Data Structures – Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen
Functions & Subroutines

In the subroutine seen earlier, arguments have always been passed by
value. This means that, when calling a subroutine, what is passed to the
subroutine are the values of these arguments on the moment of the call,
which are copied into the variables represented by the subroutine
parameters. For example, take:

int x=5, y=3;
addition (x, y);

In this case, subroutine addition is passed 5 and 3, which are copies of the
values of x and y, respectively. These values (5 and 3) are used to initialize
the variables set as parameters in the subroutine's definition, but any
modification of these variables within the subroutine has no effect on the
values of the variables x and y outside it, because x and y were themselves
not passed to the subroutine on the call, but only copies of their values at
that moment.

10 Arguments passed by value and by reference

Data Structures – Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen
Functions & Subroutines

In certain cases, though, it may be useful to access an external variable

from within a subroutine. To do that, arguments can be passed by

reference, instead of by value. For example, the subroutine duplicate in this

code duplicates the value of its three arguments, causing the variables

used as arguments to actually be modified by the call.

To gain access to its arguments, the subroutine declares its parameters

as references. In C++, references are indicated with an ampersand (&)

following the parameter type, as in the parameters taken by example of

duplicate.

11 Arguments passed by value and by reference

Data Structures – Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen
Functions & Subroutines

#include <iostream>
using namespace std;

void duplicate (int& a, int& b, int& c) {
a*=2;
b*=2;
c*=2;

}

int main () {
int x=1, y=3, z=7;
duplicate (x, y, z);
cout << "x=" << x << ", y=" << y << ", z=" << z;
return 0;

}

12 Arguments passed by value and by reference

Data Structures – Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen
Functions & Subroutines

When a variable is passed by reference, what is passed is no longer a
copy, but the variable itself, the variable identified by the subroutine
parameter, becomes somehow associated with the argument passed to
the subroutine, and any modification on their corresponding local
variables within the subroutine are reflected in the variables passed as
arguments in the call.

In fact, a, b, and c become aliases of the arguments passed on the
subroutine call (x, y, and z) and any change on a within the subroutine is
actually modifying variable x outside the function. Any change
on b modifies y, and any change on c modifies z. That is why when, in
the example, subroutine duplicate modifies the values of variables a, b,
and c, the values of x, y, and z are affected.

Ministry of Higher Education & Scientific Research
Al-Furat Al-Awsat Technical University

Karbala Technical Institute
Department of Computer System Techniques.

Data Structures
Second Stage

Assist. Prof. Dr. Wathiq Laftah Al-Yaseen

2022-2023

Stack

Data Structures (5) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

In this lesson we will learn …

- What is the stack?

- Operations on the stack.

- Insertion algorithm (Push).

- Deletion algorithm (Pop).

2

3

Data Structures (5) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Stack-Linear Data Structure

A stack is a method that be grouped the items together by placing one
item on top of another item and then removing items one at a time from
the top of the stack.

When we hear the term “stack” used outside the context of computer
programming, we might envision a stack of dishes in our kitchen. This
organization is structured in a particular way: the newest dish is on top
and the oldest is on the bottom of the stack.

Each dish in a stack is accessed using LIFO: last in-first out. The only
way to access each dish is from the top of the stack. If we want the third
dish (the third oldest on the stack), then we must remove the first two
dishes from the top of the stack. This places the third dish at the top of
the stack making it available to be removed.

4

Data Structures (5) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Stack-Linear Data Structure

Stack Definition is a linear linked list that permits the insertion or
deletion to occur at one end only. Such a linear list is referred to as last
in-first out (LIFO) list.
The most and least accessible element in a stack are known as the top
and the bottom of the stack. The insertion operation is referred to as
Push, the deletion as Pop.

5

Data Structures (5) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Operations on Stack

1. Push

Programmers use the term “push” to mean placing an item on a
stack. Push is the direction that data is being added to the stack …
Here’s what actually happens. The new value is assigned to the next
available array element and the index of that array element becomes
the top of the stack. The program increments the current index of the
stack by 1.

Stack is represented in C++ as follows:

stackType stackName[size of stack];
int top; item 3

item 2

item 1

…

Size of
stack

top

bottom

6

Data Structures (5) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Operations on Stack

For examples:

typeStack stack[6];
int top = 0;

The C++ subroutine to push item in stack is as follow:

void push(typeStack item){
if ((top+1) < size){

top++;
stack[top] = item;

}
else

cout << “The stack is overflow !”
}

7

Data Structures (5) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Operations on Stack

2. Pop

Popping is the reverse process of pushing: it removes an item from
the stack. It is important to understand that popping an item off the
stack doesn’t copy the item. Once an item is popped from the stack,
the item is no longer available on the stack, although the value
remains in the array.

When you pop new value from the stack, we decrement the index at
the top of the stack. That is, we make its index 2 instead of 3. This
makes pop the new value at the top of the stack..

8

Data Structures (5) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Operations on Stack

The C++ subroutine to pop item from stack is as follow:

typeStack pop(){
if (top > 0){

typeStack item = stack[top];
top = top – 1;
return item;

}
else{

cout << “The stack is empty !”
return -1;

}
}

Ministry of Higher Education & Scientific Research
Al-Furat Al-Awsat Technical University

Karbala Technical Institute
Department of Computer System Techniques.

Data Structures
Second Stage

Assist. Prof. Dr. Wathiq Laftah Al-Yaseen

2022-2023

Queue

Data Structures (6) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

In this lesson we will learn …

- What is the queue?

- Operations on the queue.

- Insertion algorithm (Insert).

- Deletion algorithm (Remove).

2

3

Data Structures (6) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

The Queue

Queue is work on the principal of First-In-First-Out (FIFO), it means first
entered item remove first. Queue have two ends front and rear, from
front you can insert element and from rear you can delete element.

In a multitasking operating system, the CPU cannot run all jobs at once,
so jobs must be batched up and then scheduled according to some
policy. Again, a queue might be a suitable option in this case.

The concept of queue can be understood by our real life problems. For
example a customer come and join in a queue to take the train ticket at
the end (rear) and the ticket is issued from the front end of queue. That
is, the customer who arrived first will receive the ticket first. It means
the customers are serviced in the order in which they arrive at the
service center.

4

Data Structures (6) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

The Queue

Definition: It is a homogeneous collection of elements in which new
elements are added at one end called rear, and the existing elements
are deleted from other end called front.

The basic operations that can be performed on queue are:

1. Insert (or add) an element to the queue.

2. Delete (or remove) an element from a queue.

Insert operation will add an element to queue, at the rear end, by
incrementing the array index. Remove operation will delete from the
front end by incrementing the array index and will assign the deleted
value to a variable.

Total number of elements present in the queue is front-rear+1, when
implemented using arrays.

5

Data Structures (6) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Operations on Queue

Queue is represented in C++ as follow:

queueType queueName[size of queue];
int front = -1, rear = -1; // when queue is empty

For examples:

const int size = 5;
float queue[size];
int front = -1, rear = -1;

Queue// front = -1, rear = -1

Before add 3 items

After add 3 items

Front = 0
rear = 2

6

Data Structures (6) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

The C++ subroutine to insert an item in queue is as follow:

void insert(queueType item){
if ((rear+1) >= size)

cout << “The queue is overflow !”;
else{

rear = rear + 1;
queue[rear] = item;
if (front == -1)

front = 0;
}

}

1. Insertion algorithm (Insert)

7

Data Structures (6) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

2. Deletion algorithm (Remove)

The C++ subroutine to remove an item from stack is as follow:

queueType remove(){
if (front == -1){

cout << “The queue is empty !”;
return -1;

}else{
queueType item = queue[front];

if (front == rear){
front = -l;
rear = -1;

}else
front = front + 1;

return item;
}

}

Ministry of Higher Education & Scientific Research
Al-Furat Al-Awsat Technical University

Karbala Technical Institute
Department of Computer System Techniques.

Data Structures
Second Stage

Assist. Prof. Dr. Wathiq Laftah Al-Yaseen

2022-2023

Pointers

Data Structures (7) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

In this lesson we will learn …

- Address Operator.
- Represent Address Operator in C++.
- Pointer Variables and their Representing in C++.
- Initialization of Pointer in C++.
- Comparing Pointers in C++.
- Pointers and Numbers.
- Allocating Memory with new operator.
- Freeing Memory with delete operator.

2

3

Data Structures (7) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Address operator

• Every variable allocates a location of memory through its
define, the memory address of this variable can be retrieved
by using the address operator (&).

• The address of a memory location is called a pointer.

• Every variable in an executing program is allocated a section
of memory large enough to hold a value of that variable’s
type.

• A variable’s address is the address of the first byte allocated
to that variable. Suppose that the following variables are
defined in a program.

4

Data Structures (7) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Address operator

char letter;

short number;

float amount;

0012ff70 0012ff71 0012ff72 0012ff73 0012ff74 0012ff75 0012ff76 0012ff77

char short float

letter number amount

Then

The address of letter is (0012ff70),

and the address of number is (0012ff72),

and address of amount is (0012ff74).

cout << &number;

5

Data Structures (7) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Representing address operator in C++

• C++ has an address operator (&) that can be used to retrieve
the address of any variable.

• To use it, place it before the variable whose address we
want.

• Here is a statement that displays the variable’s address to
the screen:

cout << &amount;

• By default, C++ prints addresses in hexadecimal. But we can
used a function-style cast to long to make the address print
in the usual decimal format:

cout << long(&amount);

6

Data Structures (7) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Representing address operator in C++

//This program uses the & operator to determine a variable's address.
#include <iostream>
char letter;
short number;
float amount;
double profit;
int main(){

cout << “Address of letter is: “ << long(&letter) << endl;
cout << “Address of number is: “ << long(&number) << endl;
cout << “Address of amount is: “ << long(&amount) << endl;
cout << “Address of profit is: “ << long(&profit) << endl;
return 0;

}

The output of program
Address of letter is: 4299190272
Address of number is: 4299190274
Address of amount is: 4299190276
Address of profit is: 4299190280

7

Data Structures (7) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Pointer variables and their representing in C++
• A pointer variable is a variable that holds addresses of memory

locations.

• A pointer is a variable whose value is the address of another
variable.

• Like other data values, memory addresses, or pointer values, can be
stored in variables of the appropriate type.

• The general form for declaring pointer in C++ is:

The following are the valid pointer declaration:
int *p; // pointer to an integer
double *dp; // pointer to a double
float *fp; // pointer to a float
char *ch; // pointer to character

8

Data Structures (7) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Pointer variables and their representing in C++

//This program stores the address of a variable in a pointer.
#include <iostream>
int main(){

int x = 25; // Integer variable
int *ptr; // Pointer variable, can point to an int
ptr = &x; // Store the address of x in ptr
cout << “The value in x is “ << x << endl;
cout << “The address of x is “ << ptr << endl;
return 0;

} The output of program
The value in x is 25
The address of x is 0xffffcbe4

9

Data Structures (7) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Pointer variables and their representing in C++

The following figure illustrates the relationship between (ptr)
and (x) in previous program.

0xffffcbe4

25
ptr

x

Address of x is 0xffffcbe4

We can use a pointer to indirectly access and modify the
variable being pointed to. Look to the next program.

10

Data Structures (7) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Pointer variables and their representing in C++

//This program demonstrates the use of the indirection operator.
#include <iostream>
int main(){

int x = 25; int *ptr;
ptr = &x;
//Use both x and ptr to display the value in x.
cout << “Here is the value in x, printed twice:\n”;
cout << x << “ “ << *ptr << endl;
//Assign 100 to the location pointed to by ptr.
//This will actually assign 100 to x.
*ptr = 100;
cout << “Once again, here is the value in x:\n”;
cout << x << “ “ << *ptr << endl;
return 0;

}

The output of program
Here is the value in x, printed twice:
25 25
Once again, here is the value in x:
100 100

11

Data Structures (7) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Initialization of pointer in C++

• Pointers can be initialized with the address of an existing
object.

• When a pointer is initialized with an address of object, it
must be the pointer and the object of the same data type.
For example:

int x;

int *p = &x; // Type is matching

int y;

float *f = &y; // Type is mismatching

12

Data Structures (7) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Comparing pointers in C++

• C++’s relational operators (==, !=, <, >, >=, <=) can be used to
compare pointer values.

• Comparing two pointers is not the same as comparing the values
the two pointers point to. For example:

1. The following if statement compares the addresses stored in the
pointer variables ptr1 and ptr2.

if (ptr1 < ptr2)

2. The following if statement, compares the values that ptr1 and ptr2
point to.

if (*ptr1 < *ptr2)

3. The following if statement is wrong because we cannot compare
address with normal value.

if (ptr > *ptr)

13

Data Structures (7) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Allocate memory with new Operator

We’ve initialized pointers to the addresses of variables; the variables
are named memory allocated during compile time, and each pointer only
provides an alias for memory we could access directly by name
anyway.

The true worth of pointers comes into play when we allocate unnamed
memory during runtime to hold values. In this case, pointers become the
only access to that memory.

In C++, we can allocate memory by using the new operator.

The general form for declaring pointer with new operator:

14

Data Structures (7) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Allocate memory with new Operator

Let’s try out this new technique by creating unnamed runtime storage
for a type int value and accessing the value with a pointer. Here’s an
example:

int *pn = new int;

int main(){

int *pt = new int; // allocate space for an int

*pt = 1001; // store a value there

cout << “int value = “ << *pt << “: location = “ << pt << endl;

double *pd = new double; // allocate space for a double

*pd = 10000001.0; // store a double there

15

Data Structures (7) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Allocate memory with new Operator

cout << “double value = “ << *pd << “: location = “ << pd << endl;

cout << “size of pt = “ << sizeof(pt);

cout << “: size of *pt = “ << sizeof(*pt) << endl;

cout << “size of pd = “ << sizeof (pd);

cout << “: size of *pd = “ << sizeof(*pd) << endl;

return 0;

}
The output of program
int value = 1001: location = 0x004301a8
double value = 1e+07: location = 0x004301d8
size of pt = 4: size of *pt = 4
size of pd = 4: size of *pd = 8

16

Data Structures (7) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Freeing Memory with delete operator

Using new to request memory when you need it is just the more
glamorous half of the C++ memory-management package. The other
half is the delete operator, which enables you to return memory to the
memory pool when you are finished with it. That is an important step
toward making the most effective use of memory. Memory that you
return, or free, can then be reused by other parts of the program. You
use delete by following it with a pointer to a block of memory originally
allocated with new:

int *ps = new int; // allocate memory with new

. . . // use the memory

delete ps; // free memory with delete when done

Ministry of Higher Education & Scientific Research
Al-Furat Al-Awsat Technical University

Karbala Technical Institute
Department of Computer System Techniques.

Data Structures
Second Stage

Assist. Prof. Dr. Wathiq Laftah Al-Yaseen

2022-2023

Linked List

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

In this lesson we will learn …

- Types of storage allocation.

- Comparison between sequential and dynamic

storage allocation.

- Single linked list.

- Operations on single linked list.

- Double linked list.

- Operations on double linked list.

- Circular linked lists.

- Operations on circular linked lists.

2

3

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Types of storage allocation

There are two types of storage allocation depending on the structure of
the data:

- Sequential Allocation Storage

Is the simples way to store lists in memory sequentially, and from the
Base address which is the first location of the list, we can know the
location of any item in the list.

Advantages
1. Simple in representation.
2. Take less memory space.
3. Efficient in random access.

Disadvantages
1. Hard to apply addition and deletion.
2. Number of elements must be predefined.

4

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Types of storage allocation

- Dynamic Allocation Storage

The second way to store lists is to use link (or pointer), each element
contain the location of the next element, so elements may not stored
sequentially in memory.

Each element (node) consist of 2 parts:
1. Data
2. pointer (link) to the next address Data Pointer

Advantages
1. Insertion and deletion is easy to implement (not need shifting).
2. Easy to merge and split by only change the pointers.

Disadvantages
1. Take more memory space.
2. To access any element randomly, we must start from the beginning

of the list.

5

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Comparison between sequential and dynamic allocation

1. Amount of storage

The dynamic storage need more memory space because of the need to use

pointer to next element.

2. Insertion and deletion operations

These operations simplest to execute in dynamical storage because they

don’t need shifting.

3. Random access

The sequential way is easier in accessing randomly, but the dynamic way

require to start searching from the beginning of the list.

4. Merge and sort

In the dynamic storage these operations are simple to execute by only

change the pointer in merging location while the sequential storage need

shifting and reorganization.

6

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Linked lists

A list that use pointers or link to refer to the elements of data structures,
in a way that element which have logically adjacent need not to be
physically adjacent in memory.

Types of linked lists

1. Single Linked List: is a list contains set of elements, and each element

(node) contain a link or pointer to the next node.
nil

2. Double Linked List: a list has more than one pointer, which has two

pointers pointing to the previous and next node.

nilnil

7

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Linked lists

3. Circuler Linked List: a list that last node points to the first node.

first last

Example: Consider the following Linked List (Ordered):

Address Data
1. 2000 A
2. 2010 B
3. 2002 C
4. 2012 D
5. 2006 E

8

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Linked lists

a. Draw the list.

A 2010 B 2002

2000 2010

C 2012

2002

D 2006

2012

E nil

2006

b. Insert node X after A at location 2005.

A 2005 X 2010

2000 2005

B 2002

2010

C 2012

2002

b. Delete the node B.

A 2005 X 2002

2000 2005

B 2002

2010

C 2012

2002

9

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Operation on single linked list

• Creating linked list of 2 nodes

struct node{
int data;
node *next;

}
node *p = new node;
p->data = 100;
p->next = NULL;
node *start = p;
cout << “The first data: ” <<start->data << endl;
p = new node;
p->data = 200;
p->next = NULL;
start->next = p;
cout << “The second data: ” << start->next->data;

Output of this code:

The first data: 100
The second data: 200

10

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Operation on single linked list
• Creating linked list of N nodes

struct node{
int data;
node *next;

}
node *p = new node;
cin >> p->data;
p->next = NULL;
node *start = p;
node *q = p;
// Read N nodes of linked list
for (int i = 2; i <= N; i++){

p = new node;
cin >> p->data;
p->next = NULL;
q->next = p;
q = p;

}

// Output linked list
p = start;
while (p != NULL){

cout << p->data << endl;
p = p->next;

}

11

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Operation on single linked list

• Delete node depends on element

p = start;
While ((p != NULL) && (p->data != value)){

q = p;
p = p->next;

}
If (p == NULL)

cout << “The value is not found”
Else{

if (p == start){
start = start->next;
p->next = NULL;
delete (p);

}

12

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Operation on single linked list

• Delete node depends on element

else{
q->next = p->next;
p->next = NULL;
delete(p);
p = q->next;

}
}

13

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Operation on single linked list

• Insert node to begin of linked list

node *r = new node;
cout << “Enter new value :”;
cin >> r->data;
r->next = start;
start = r;

• Insert node to end of linked list

node *r = new node;
cout << “Enter new value :”;
cin >> r->data;
r->next = NULL;
p = start ;
while (p->next != NULL){

p = p->next;
p->next = r;

14

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Operation on single linked list

• Insert node to position n of linked list
node *r = new node;
cout << “Enter new value :”;
cin >> r->data;
r->next = NULL;
cout << “Enter position n: ”
cin >> n;
p = start;
int i = 1;
if (n == 1){

r->next = start;
start = r;

}
else

while ((p != NULL) && (i < n)){
q = p;
p = p->next;
i++;

15

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Operation on single linked list

• Insert node to position n of linked list

}
if (p == NULL)

if (i == n)
q->next = r;

else
cout << “The position is out of range !!”;

else{
q->next = r;
r->next = p;

}
}

16

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Double linked list

In these lists there are two pointers the first points to the previous
element (left-link) and the second points to the next element (right-link).

Data R. LinkL. Link

For example

B CAnil nil

• Define double linked list

struct node{
int data;
node *previous; //L. Link
node *next; //R. Link

}

17

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Double linked list

• Insert element to the beginning of double linked list

node *p = new node;
cout << “Enter new value :”;
cin >> p->data;
p->next = start;
p->previous = NULL;
start->previous = p;
start = p;

• Create new double linked list with one node

node *p = new node;
cout << “Enter new value :”;
cin >> p->data;
p->next = NULL;
p->previous = NULL;
start = p;

18

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Double linked list

• Insert element to the end of double linked list

node *p = new node;
cout << “Enter new value :”;
cin >> p->data;
p->next = NULL;
node *q = start;
while (q->next != NULL)

q = q->next;
p->previous = q;
q->next = p;

• Insert element before the n node of double linked list

node *p = new node;
cout << “Enter new value :”;
cin >> p->data;
node *q = start;

19

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Double linked list

int i = 1;
while (i < n){

i++;
q = q->next;

}
p->previous = q->previous;
p->next = q;
q->previous = p;

• Insert element after the n node of double linked list

…. // same the last search code about n node in the double linked list

p->next = q->next;
q->next = p;
p->previous = q;

20

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Double linked list

• Delete the first node of double linked list
p = start;
start = start->next;
p->next = NULL;
start->previous = NULL;
delete (p);

• Delete the last node of double linked list

p = start;
while (p->next != NULL)

p = p->next;
p->previous->next = NULL;
p->previous = NULL;
delete (p);

21

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Double linked list

• Delete the n node of double linked list
p = start;
int i = 1;
while (i < n){

i++;
p = p->next;

}
q = p->previous;
r = p->next;
q->next = r;
r->previous = q;
p->previous = NULL;
p->next = NULL;
delete (p);

22

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Double linked list

• Print double linked list from left to right

p = start;
while (p != NULL){

cout << p->data << endl;
p = p->next;

}

• Print double linked list from right to left

p = start;
while (p->next != NULL)

p = p->next;
while (p != NULL){

cout << p->data << endl;
p = p->previous

}

23

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Circular linked list

• Create the first node of circular linked list

node *p = new node;
cout << “Input the data: ”;
cin >> p->data;
p->next = p;
start = p;

• Insert element to the beginning of circular linked list

node *p = new node;
cout << “Input the data: ”;
cin >> p->data;
q = start;
while (q->next != start)

q = q->next;
p->next = start;
q->next = p;
start = p;

24

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Circular linked list

• Insert element to the end of circular linked list

node *p = new node;
cout << “Input the data: ”;
cin >> p->data;
q = start;
while (q->next != start)

q = q->next;
p->next = start;
q->next = p;

✓ What are the differences between insert element to the beginning
and end of circular linked list ?

✓ How can insert element to the n position of circular linked list ?

25

Data Structures (8) Computer Systems/2nd Stage Dr. Wathiq Laftah Al-Yaseen

Circular linked list

• Delete the first node of circular linked list
q = start;
while (q->next != start)

q = q->next;
p = start;
start = start->next;
q->next = start;
p->next = NULL;
delete (p);

• Delete the last node of circular linked list

q = start;
while (q->next->next != start)

q = q->next;
p = q->next;
q->next = start;
p->next = NULL;
delete (p);

	Data Structure 1
	Data Structure 2
	Data Structure 3
	Data Structure 4
	Functions and Subroutines
	Data Structure 5
	Data Structure 6
	Data Structure 7
	Data Structure 8

